European Journal of Plant Pathology

, Volume 135, Issue 4, pp 831–843 | Cite as

Natural variation of Medicago truncatula resistance to Aphanomyces euteiches

  • Naceur Djébali
  • Souha Aribi
  • Wael Taamalli
  • Soumaya Arraouadi
  • Mohamed Elarbi Aouani
  • Mounawer Badri
Article

Abstract

We analysed the resistance variation in 14 natural populations of Medicago truncatula from Tunisia to Aphanomyces euteiches infection. The reaction of M. truncatula lines to A. euteiches infection varied from susceptibility to full resistance. Of the overall level of phenotypic variation, 65.4 % was found to occur within populations. Principal component analysis showed a high spread of lines belonging to the same population, indicating no clear structure in the Tunisian M. truncatula populations and supporting the hypothesis of gene flow among populations. Likewise, there was no association between local resistance composition and the geographical distances between populations, ruling out isolation by distance as an explanation. Furthermore, significant correlations were observed between quantitative traits and ecological factors consistent with the local adaptation hypothesis. A cluster analysis of the populations showed the presence of three groups. The first group comprised the populations originating from the centre of the country, containing the main resistant lines. The second group included the populations collected in the south and the mountain region of Thala and contained the main partially resistant lines. The third group comprised the populations sampled from the north regions and saline soils and included the main susceptible lines. Overall, we found that the natural M. truncatula lines were more likely to be susceptible (71.3 %) than resistant (28.7 %) to A. euteiches attack. Nevertheless, many resistant lines exhibiting new reaction patterns to A. euteiches attack were identified in the natural populations and these can be used for the identification of potentially new resistance genes.

Keywords

Biodiversity Model legume Natural populations Oomycete pathogen Tunisia 

Abbreviations

CVg

Coefficient of genetic variation

dpi

Day post inoculation

PCA

Principal component analysis

QST

Level of population differentiation for quantitative traits

Notes

Acknowledgments

This work was funded by the Tunisian Ministry of Higher Education and Scientific Research. We thank Dr. Eric von Wettberg (Florida International University, USA) for a critical reading of the manuscript and the anonymous reviewers for helpful comments.

References

  1. Arraouadi, S., Badri, M., Abdul Jaleel, C., Djébali, N., Ilahi, H., Huguet, T., et al. (2009). Analysis of genetic variation in natural populations of Medicago truncatula of Southern Tunisian ecological areas, using morphological traits and SSR markers. Tropical Plant Biology, 2, 122–132.CrossRefGoogle Scholar
  2. Arraouadi, S., Badri, M., Taamalli, W., Huguet, T., & Aouani, M. E. (2011). Variability salt stress response analysis of Tunisian natural populations of Medicago truncatula (Fabaceae) using salt response index (SRI) ratio. African Journal of Biotechnology, 10, 10636–10647.Google Scholar
  3. Arraouadi, S., Badri, M., Zitoun, A., Huguet, T., & Aouani, M. E. (2011). Analysis of NaCl stress response in Tunisian and reference lines of Medicago truncatula. Russian Journal of Plant Physiology, 58, 316–323.CrossRefGoogle Scholar
  4. Badreddine, I., Lafitte, C., Heux, L., Skandalis, N., Spanou, Z., Martinez, Y., et al. (2008). Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteiches. Eukaryotic Cell, 7, 1980–1993.PubMedCrossRefGoogle Scholar
  5. Badri, M., Arraouadi, S., Huguet, T., & Aouani, M. E. (2010). Comparative effects of water deficit on Medicago laciniata and Medicago truncatula lines sampled from sympatric populations. Journal of Plant Breeding and Crop Science, 2, 259–266.Google Scholar
  6. Badri, M., Ilahi, H., Huguet, T., & Aouani, M. E. (2007). Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical factors. Genetics Research, 89, 107–122.CrossRefGoogle Scholar
  7. Bécard, G., & Fortin, J. A. (1988). Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist, 108, 211–218.CrossRefGoogle Scholar
  8. Bonnin, I., Prosperi, J. M., & Olivieri, I. (1996). Genetic markers and quantitative genetic variation in Medicago truncatula (Leguminosae): a comparative analysis of population structure. Genetics, 143, 1795–1805.PubMedGoogle Scholar
  9. Bonnin, I., Prospéri, J. M., & Oliviéri, I. (1997). Comparison of quantitative genetic parameters between two natural populations of a selfing plant species, Medicago truncatula Gaertn. Theortical and Applied Genetics, 94, 641–651.CrossRefGoogle Scholar
  10. Charlesworth, D. (2003). Effects of inbreeding on the genetic diversity of populations. Philosophical Transactions of the Royal Society B, 358, 1051–1570.CrossRefGoogle Scholar
  11. Cook, D., Kim, D. J., Zhu, H. Y., & Uribe, P. (2000). Plant-pathogen interactions in Medicago truncatula. Grain Legumes, 28, 20.Google Scholar
  12. Dixon, R. A., Achnine, L., Kota, P., Liu, C., Reddy, M. S. S., & Wang, L. (2002). The phenylpropanoid pathway and plant defence-a genomics perspective. Molecular Plant Pathology, 3, 371–390.PubMedCrossRefGoogle Scholar
  13. Djébali, N., Jauneau, A., Ameline-Torregrosa, C., Chardon, F., Mathé, C., Bottin, A., et al. (2009). Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Molecular Plant-Microbe Interactions, 22, 1043–1055.PubMedCrossRefGoogle Scholar
  14. Djébali, N., Mhadhbi, H., Lafitte, C., Dumas, B., Esquerre-Tugaye, M. T., Aouani, M. E., et al. (2011). Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches. European Journal of Plant Pathology, 131, 559–571.CrossRefGoogle Scholar
  15. Farag, M. A., Huhman, D. V., Dixon, R. A., & Sumner, L. W. (2008). Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiology, 146, 387–402.PubMedCrossRefGoogle Scholar
  16. Friesen, M. L., Cordeiro, M. A., Penmetsa, R. V., Badri, M., Huguet, T., Aouani, M. E., et al. (2010). Population genomic analysis of Tunisian Medicago truncatula reveals candidates for local adaptation. The Plant Journal, 63, 623–635.PubMedCrossRefGoogle Scholar
  17. Jaramillo-Correa, J. P., Beaulieu, J., & Bousquet, J. (2001). Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Molecular Ecology, 10, 2729–2740.PubMedCrossRefGoogle Scholar
  18. Kamphuis, L., Lichtenzveig, J., Oliver, R., & Ellwood, S. (2008). Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula. BMC Plant Biology, 8, 30.PubMedCrossRefGoogle Scholar
  19. Laine, A. L., Burdon, J. J., Dodds, P. N., & Thrall, P. H. (2011). Spatial variation in disease resistance: from molecules to metapopulations. Journal of Ecology, 99, 96–112.PubMedCrossRefGoogle Scholar
  20. Lattanzio, V., Lattanzio, V. M. T., & Cardinali, A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In F. Imperato (Ed.), Phytochemistry: Advances in research (pp. 23–67). Kerala: Research Signpost.Google Scholar
  21. Lazrek, F., Roussel, V., Ronfort, J., Cardinet, G., Chardon, F., Aouani, M. E., et al. (2009). The use of neutral and non-neutral SSRs to analyze the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica, 135, 391–402.PubMedCrossRefGoogle Scholar
  22. Lebeda, A., Sedlářová, M., Petřivalský, M., & Prokopová, J. (2008). Diversity of defence mechanisms in plant–oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. European Journal of Plant Pathology, 122, 71–89.CrossRefGoogle Scholar
  23. Lesins, K. A., & Lesins, I. (1979). Genus Medicago (Leguminosae): A taxogenetic study (p. 228). The Hague: W. Junk.CrossRefGoogle Scholar
  24. Moussart, A., Onfroy, C., Lesne, A., Esquibet, M., Grenier, E., & Tivoli, B. (2007). Host status and reaction of Medicago truncatula accessions to infection by three major pathogens of pea (Pisum sativum) and alfalfa (Medicago sativa). European Journal of Plant Pathology, 117, 57–69.CrossRefGoogle Scholar
  25. Pilet-Nayel, M. L., Muehlbauer, F. J., McGee, R. J., Kraft, J. M., Baranger, A., & Coyne, C. J. (2002). Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theortical and Applied Genetics, 106, 28–39.Google Scholar
  26. Pilet-Nayel, M. L., Prosperi, J. M., Hamon, C., Lesne, A., Lecointe, R., Le Goff, I., et al. (2009). AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula. Phytopathology, 99, 203–208.PubMedCrossRefGoogle Scholar
  27. Reau, R., Bodet, J. M., Bordes, J. P., Dore, T., Ennaifar, S., Moussart, A., et al. (2005). Effets allélopathiques des Brassicacées via leurs actions sur les agents pathogènes telluriques et les mycorhizes. Oléagineux Corps Gras Lipides, 12, 314–319.Google Scholar
  28. SAS Institute. (1998). SAS/STAT User’ Guide, version 70. Cary: SAS Institute Inc.Google Scholar
  29. Stenoien, H. K., Fenster, C. B., Tonteri, A., & Savolainen, O. (2005). Genetic variability in natural populations of Arabidopsis thaliana in Northern Europe. Molecular Ecology, 14, 137–148.PubMedCrossRefGoogle Scholar
  30. Vandemark, G., & Grünwald, N. J. (2004). Reaction of Medicago truncatula to Aphanomyces euteiches race 2. Archives of Phytopathology and Plant Protection, 37, 59–67.CrossRefGoogle Scholar
  31. Wicker, E., & Rouxel, F. (2001). Specific behaviour of French Aphanomyces euteiches Drechs. populations for virulence and aggressiveness on pea, related to isolates from Europe, America and New Zealand. European Journal of Plant Pathology, 107, 919–929.CrossRefGoogle Scholar
  32. Young, N. D., Cannon, S. B., Sato, S., Kim, D., Cook, D. R., Town, C. D., et al. (2005). Sequencing the Genespaces of Medicago truncatula and Lotus japonicus. Plant Physiology, 137, 1174–1181.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Naceur Djébali
    • 1
    • 2
  • Souha Aribi
    • 1
  • Wael Taamalli
    • 1
  • Soumaya Arraouadi
    • 1
  • Mohamed Elarbi Aouani
    • 1
  • Mounawer Badri
    • 1
  1. 1.Centre of Biotechnology of Borj CedriaHammam-LifTunisia
  2. 2.Laboratory of Molecular Physiology of PlantsCentre of Biotechnology of Borj CedriaHammam-LifTunisia

Personalised recommendations