European Journal of Plant Pathology

, Volume 135, Issue 3, pp 561–580 | Cite as

Crop architecture and crop tolerance to fungal diseases and insect herbivory. Mechanisms to limit crop losses

  • B. Ney
  • M. O. Bancal
  • P. Bancal
  • I. J. Bingham
  • J. Foulkes
  • D. Gouache
  • N. Paveley
  • J. Smith
Special Issue 'Architecture and Epidemiology'

Abstract

Plant tolerance to biotic stresses (mostly limited here to fungal pathogens and insects) is the ability of a plant to maintain performance in the presence of expressed disease or insect herbivory. It differs from resistance (the capacity to eliminate or limit pests and pathogens by genetic and molecular mechanisms) and avoidance (the ability to escape infection by epidemics). The ways to tolerance of pests and diseases are multiple and expressed at different scales. The contribution of organs to the capture and use of resources depends on canopy and root architecture, so the respective locations of disease and plant organs will have a strong effect on the crop’s response. Similarly, tolerance is increased when the period of crop sensitivity lies outside the period within which the pest or pathogen is present. The ability of the plant to compensate for the reduced acquisition of resources by the production of new organs or by remobilization of reserves may also mitigate biotic stress effects. Numerous examples exist in the literature and are described in this article. Quantification of tolerance remains difficult because of: (i) the large number of potential mechanisms involved; (ii) different rates of development of plants, pests and pathogens; and (iii) various compensatory mechanisms. Modelling is, therefore, a valuable tool to quantify losses, but also to prioritize the processes involved.

Keywords

Diseases Insects Tolerance Crop architecture Modelling 

References

  1. Aguado, A., De Los Santos, B., Gamane, D., Garcıá del Moral, L. F., & Romero, F. (2010). Gene effects for cotton-fiber traits in cotton plant (Gossypium hirsutum L.) under Verticillium conditions. Field Crops Research, 116, 209–217.Google Scholar
  2. Arraiano, L. S., Balaamb, N., Fenwickc, P. M., Chapman, C., Feuerhelm, D., Howell, P., et al. (2009). Contributions of disease resistance and escape to the control of Septoria tritici blotch of wheat. Plant Pathology, 58, 910–922.Google Scholar
  3. Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany Darwin Review. doi:10.1093/jxb/ers100.
  4. Ayres, P. G. (1981). Powdery mildew stimulates photosynthesis in uninfected leaves of pea plants. Phytopathologische Zeitschrift, 100, 312–318.Google Scholar
  5. Ayres, P G. (1991). Growth responses induced by pathogens and other stresses. In Mooney, H.A., Winner, W.E. & Pell E.J. (Eds.), Response of plants to multiple stresses (pp. 227–248). Academic Press Inc.Google Scholar
  6. Ayres, P. G., Press, C. M., & Spencer-Phillips, P. T. N. (1996). Effects of Pathogens and parasitic plants on source-sink relationships. In E. Zamski & A. A. Schaffer (Eds.), Photoassimilate distribution in plants and crops: Source-sink relationships (pp. 479–499). New York: M. Dekker Inc.Google Scholar
  7. Bailey, D. J., Paveley, N., Pillinger, C., Foulkes, M. J., Spink, J., & Gilligan, C. A. (2005). Epidemiology and chemical control of take-all on seminal and adventitious roots of wheat. Phytopathology, 95, 62–68.PubMedGoogle Scholar
  8. Bailey, D. J., Kleczkowski, A., & Gilligan, C. A. (2006). An epidemiological analysis of the role of diseased-induced root growth in differential response of two cultivars of winter wheat to infection by Gaeumannomyces graminis var. tritici. Phytopathology, 96, 510–516.PubMedGoogle Scholar
  9. Baldwin, I. T. (2001). An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiology, 127, 1449–1458.PubMedGoogle Scholar
  10. Bancal, P., & Soltani, F. (2002). Source-sink partitioning. Do we need Munch? Journal of Experimental Botany, 53, 1919–1928.PubMedGoogle Scholar
  11. Bancal, M.-O., Robert, C., & Ney, B. (2007). Modelling wheat growth and yield losses from late epidemics of foliar diseases using loss of green leaf area per layer and pre-anthesis reserves. Annals of Botany, 100, 777–789.PubMedGoogle Scholar
  12. Bancal, M.-O., Bancal, P., Ben Slimane, R., Gate, P., & Gouache, D. (2009). Tolérance du Blé à la septoriose. In 9ème Conférence Internationale sur les Maladies des Plantes (pp. 339–346). Tours: AFPP.Google Scholar
  13. Bancal, P., Gouache, D., Soulard, T. & Bancal, M-O. (2010). A general cultivar tolerance to stresses and its modeling in the case of wheat affected by STB (Septoria tritici). In Wery, J., Shili-Touzi, I. & Perrin, A. (Eds.), Proceedings of Agro2010 - the XIth ESA Congress (pp. 101–102). Agropolis International Editions, Montpellier, France.Google Scholar
  14. Bancal, M.-O., Hansart, A., Sache, I., & Bancal, P. (2012). Modeling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen. Annals of Botany, 110, 113–123.PubMedGoogle Scholar
  15. Bastiaans, L. (1991). The ratio between virtual and visual lesion size as a measure to describe reduction in leaf photosynthesis of rice due to leaf blast. Phytopathology, 81, 611–615.Google Scholar
  16. Bastiaans, L. (1993a). Effects of leaf blast on growth and production of a rice crop. 1. Determining the mechanism of yield reduction. Netherlands Journal of Plant Pathology, 99, 323–334.Google Scholar
  17. Bastiaans, L. (1993b). Effects of leaf blast on photosynthesis of rice. 1. Leaf photosynthesis. European Journal of Plant Pathology, 99, 197–203.Google Scholar
  18. Bastiaans, L., & Kropff, M. J. (1993). Effects of leaf blast on photosynthesis of rice. 2. Canopy photosynthesis. Netherlands Journal of Plant Pathology, 99, 205–217.Google Scholar
  19. Bastiaans, L., & Roumen, E. C. (1993). Effect on leaf photosynthetic rate by leaf blast for rice cultivars with different types and levels of resistance. Euphytica, 66, 81–87.Google Scholar
  20. Beasse, C., Ney, B., & Tivoli, B. (2000). A simple model of pea (Pisum sativum L.) growth affected by Mycosphaerella pinodes. Plant Pathology, 49, 187–200.Google Scholar
  21. Beattie, G., & Lindow, S. E. (1995). The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology, 33, 145–172.PubMedGoogle Scholar
  22. Ben Slimane, R., Bancal, P., & Bancal, M.-O. (2009). Regulation of grain N accumulation in wheat. In F. Feldman, D. V. Alford, & C. Furk (Eds.), Crop plant resistance to biotic and abiotic factors (pp 198–208). Braunschweig: Deutsche Phytomedezinische Gesellschaft.Google Scholar
  23. Ben Slimane, R., Bancal, P., Suffert, F., & Bancal, M.-O. (2012). Localized septoria leaf blotch lesions in winter wheat flag leaf do not accelerate apical senescence during the necrotrophic stage. Journal of Plant Pathology, 1. doi:10.4454/JPP.FA.2012.055.
  24. Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122, 419–428.Google Scholar
  25. Bingham, I. J., & Newton, A. C. (2009). Crop tolerance of foliar pathogens: possible mechanisms and potential for exploitation. In D. R. Walters (Ed.), Disease Control in Crops. Biological and Environmentally Friendly Approaches (pp. 142–161). Oxford: Wiley-Blackwell.Google Scholar
  26. Bingham, I. J., & Topp, C. F. E. (2009). Potential contribution of selected canopy traits to the tolerance of foliar disease by spring barley. Plant Pathology, 58, 1010–1020.Google Scholar
  27. Bingham, I. J., Blake, J., Foulkes, M. J., & Spink, J. (2007a). Is barley yield in the UK sink limited? I. Post-anthesis radiation interception, radiation use efficiency and source-sink balance. Field Crops Research, 101, 198–211.Google Scholar
  28. Bingham, I. J., Blake, J., Foulkes, M. J., & Spink, J. (2007b). Is barley yield in the UK sink limited? II. Factors affecting potential grain size. Field Crops Research, 101, 212–220.Google Scholar
  29. Bingham, I. J., Walters, D. R., Foulkes, M. J., & Paveley, N. D. (2009). Crop traits and the tolerance of wheat and barley to foliar disease. Annals of Applied Biology, 154, 159–173.Google Scholar
  30. Bingham, I.J., Hoad, S.P, Thomas W.T.B. & Newton A.C. (2012). Yield response to fungicide of spring barley genotypes differing in disease susceptibility and canopy structure. Field Crops Research (in press).Google Scholar
  31. Bryson, R. J., Paveley, N. D., Clark, W. S., Sylvester-Bradley, R., & Scott, R. K. (1997). Use of in-field measurements of green leaf area and incident radiation to estimate the effects of yellow rust epidemics on the yield of winter wheat. European Journal of Agronomy, 7, 53–62.Google Scholar
  32. Caldwell, R. M., Schafer, J. F., Compton, L. E., & Patterson, F. L. (1958). Tolerance to cereal leaf rusts. Science, 128, 714–715.PubMedGoogle Scholar
  33. Carretero, R., Serrago, R., Bancal, M.-O., Perello, A. E., & Miralles, D. J. (2010). Absorbed radiation and radiation use efficiency as affected by foliar diseases in relation to their vertical position into the canopy in wheat. Field Crops Research, 116, 184–195.Google Scholar
  34. Carretero, R., Bancal, M.-O., & Miralles, D. J. (2011). Effect of leaf rust (Puccinia triticina) on photosynthesis and related processes of leaves in wheat crops grown at two contrasting sites and with different nitrogen levels. European Journal of Agronomy, 35, 237–246.Google Scholar
  35. Chou, H. M., Bundock, N., Rolfe, S. A., & Scholes, J. D. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Molecular Plant Pathology, 1, 99–113.PubMedGoogle Scholar
  36. Clarke, D. D. (1984). Tolerance of parasitic infection in plants. In R. K. S. Wood & G. J. Jellis (Eds.), Plant diseases: infection damage and loss. Oxford, UK: Blackwell Scientific.Google Scholar
  37. Clarke, D. D. (1986). Tolerance of parasites and disease in plants and its significance in host-parasite interactions. Advances in Plant Pathology, 5, 161–197.Google Scholar
  38. Condon, A., Richards, R., Rebetzke, G., & Farquhar, G. (2004). Breeding for high water-use efficiency. Journal of Experimental Botany, 55, 2447–2460.PubMedGoogle Scholar
  39. Cooper, J. I., & Jones, A. T. (1983). Responses of plants to viruses: proposals for the use of terms. Phytopathology, 73, 127–128.Google Scholar
  40. De Vallavieille-Pope, C., Ali, S., Leconte, M., Enjalbert, J., Delos, M., & Rouzet, J. (2012). Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. Plant Disease, 96, 131–140.Google Scholar
  41. Diepenbrock, W. (2000). Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Research, 67, 35–49.Google Scholar
  42. Espinosa, E. G., & Fornoni, J. (2006). Host tolerance does not impose selection on natural enemies. New Phytologist, 170, 609–614.PubMedGoogle Scholar
  43. Fischer, R. A., & Stockman, Y. M. (1980). Kernel number per spike in wheat (Triticum aestivum L.): Responses to preanthesis shading. Australian Journal of Plant Physiology, 7, 169–180.Google Scholar
  44. Fornoni, J., Nunez-Farfan, J., Luis Valverde, P., & Rauscher, M. D. (2004). Evolution of mixed strategies of plant defense allocation against natural enemies. Evolution, 58, 1685–1995.PubMedGoogle Scholar
  45. Foulkes, M. J., Paveley, N. D., Worland, A., Welham, S. J., Thomas, J., & Snape, J. W. (2006). Major genetic changes in wheat with potential to affect disease tolerance. Phytopathology, 96, 680–688.PubMedGoogle Scholar
  46. Foyer, C. H., Noctor, G., & van Emden, H. F. (2007). An evaluation of the costs of making specific secondary metabolites: does that yield penalty incurred by host plant resistance to insects result from competition for resources? International Journal of Pest Management, 53, 175–182.Google Scholar
  47. Fraaije, B. A., Lovell, D. J., Coelho, J. M., Baldwin, S., & Hollomon, D. W. (2001). PCR-based assays to assess wheat varietal resistance to blotch (Septoria tritici and Stagonospora nodorum) and rust (Puccinia striiformis and Puccinia recondita) diseases. European Journal of Plant Pathology, 107, 905–917.Google Scholar
  48. Gallagher, J. N., Briscoe, P. V., & Hunter, B. (1975). Effects of drought on grain growth. Nature, 264, 541–542.Google Scholar
  49. Gambín, B. L., Borrás, L., & Otegui, M. E. (2006). Source-sink relations and kernel weight differences in maize temperate hybrids. Field Crops Research, 95, 316–326.Google Scholar
  50. Gao, H., Beckman, C. H., & Mueller, W. C. (1995). The nature of tolerance to Fusarium oxysporum f. sp. lycopersici in polygenically field-resistant marglobe tomato plants. Physiological and Molecular Plant Pathology, 46, 401–412.Google Scholar
  51. Garry, G., Jeuffroy, M.-H., Ney, B., & Tivoli, B. (1998). Photosynthesis of leaves of pea (Pisum sativum L.) infected by Mycosphaerella pinodes. Plant Pathology, 47, 473–479.Google Scholar
  52. Gate, P., Gouache, D., Robert, C., Bancal, M.-O., Lannou, C., & Ney, B. (2006). What plant variable to account for loss due to septoria leaf blotch in winter wheat? In 8ème Conférence Internationale sur les Maladies des Plantes (pp. 348–358). Tours, France: AFPP.Google Scholar
  53. Gaunt, R. E., & Wright, A. C. (1992). Disease yield relationships in barley. II. Continuation of stored stem reserves to grain filling. Plant Pathology, 41, 688–701.Google Scholar
  54. Gayler, S., Grams, T. E. E., Heller, W., Treutter, D., & Priesack, E. (2008). A dynamical model of environmental effects on allocation to carbon-based secondary compounds in juvenile trees. Annals of Botany, 101, 1089–1098.PubMedGoogle Scholar
  55. Godin, C., Costes, E., & Sinoquet, H. (1999). A method for describing plant architecture which integrates topology and geometry. Annals of Botany, 84, 343–357.Google Scholar
  56. Gooding, M. J., Dimmock, J. P. R. E., France, J., & Jones, S. A. (2000). Green leaf area decline of wheat flag leaves: the influence of fungicides and relationships with mean grain weight and grain yield. Annals of Applied Biology, 136, 77–84.Google Scholar
  57. Gouache, R., Thepot, S., Roisin-Fichter, C., & Selim, S. (2011). Exploring quantitative relationships between mycelial growth and visual symptoms of Septoria tritici. In E. Duveiller & P. K. Singh (Eds.), 8th International Symposium on Mycosphaerella and Stagonospora diseases of cereals (p. 77). Mexico City: CIMMYT.Google Scholar
  58. Goyeau, H., Berder, J., Czerepak, C., Gautier, A., Lanen, C., & Lannou, C. (2011). Low diversity and fast evolution in the population of Puccinia triticina causing durum wheat leaf rust in France from 1999 to 2009, as revealed by an adapted differential set. Plant Pathology, 61, 761–772.Google Scholar
  59. Johnson, K. B. (1992). Evaluation of a mechanistic model that describes potato crop losses caused by multiple pests. Phytopathology, 82, 363–369.Google Scholar
  60. Jullien, A., Mathieu, A., Allirand, J.-M., Pinet, A., de Reffye, P., Cournede, P.-H., et al. (2010). Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model. Annals of Botany, 107, 765–779.PubMedGoogle Scholar
  61. Kluth, C., & Varrelmann, M. (2010). Maize genotype susceptibility to Rhizoctonia solani and its effect on sugar beet crop rotations. Crop Protection, 29, 230–238.Google Scholar
  62. Kover, P. X., & Schaal, B. (2002). Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. Proceedings of the National Academy of Sciences of the United States of America, 99, 11270–11274.PubMedGoogle Scholar
  63. Kramer, T., Gildemacher, B. H., van der Ster, M., & Parlevliet, J. E. (1980). Tolerance of spring barley cultivars to leaf rust. Euphytica, 29, 209–216.Google Scholar
  64. Larson, K. C., & Whitham, T. G. (1997). Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecologia, 109, 575–582.Google Scholar
  65. Le May, C., Schoeny, A., Tivoli, B., & Ney, B. (2005). Improvement and validation of a pea crop growth model to simulate the growth of cultivars infected with Ascochyta blight (Mycosphaerella pinodes). European Journal of Plant Pathology, 112, 1–12.Google Scholar
  66. Le May, C., Ney, B., Lemarchand, E., Schoeny, A., & Tivoli, B. (2009). Effect of pea plant architecture on spatiotemporal epidemic development of ascochyta blight (Mycosphaerella pinodes) in the field. Plant Pathology, 58, 332–343.Google Scholar
  67. Lehtilä, K. (2000). Modelling compensatory regrowth with bud dormancy and gradual activation of buds. Evolutionary Ecology, 14, 315–330.Google Scholar
  68. Leterme, P. (1988). Modélisation du fonctionnement du peuplement de colza d’hiver en fin de cycle: Elaboration des composantes finales du rendement. In Colza: Physiologie et Elaboration du Rendement (pp. 124–129). Paris: INRA/CETIOM.Google Scholar
  69. Long, S. P., Zhu, X.-G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29, 315–330.Google Scholar
  70. Lopes, D. B., & Berger, R. D. (2001). The effects of rust and anthracnose on the photosynthetic competence of diseased bean leaves. Phytopathology, 91, 212–220.PubMedGoogle Scholar
  71. Lovell, D., Parker, J. S. R., Hunter, T., Royle, D. J., & Cooker, R. R. (1997). Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathology, 46, 126–138.Google Scholar
  72. Macedo, T. B., Peterson, R. K. D., & Weaver, D. K. (2006). Photosynthetic responses of wheat, Tritcum aestivum L., plants to simulated insect defoliation during vegetative growth and at grain fill. Environmental Entomology, 35, 1702–1709.Google Scholar
  73. Martin, P. J. (1986). Gaseous exchange studies of barley leaves infected with Rhynchosporium secalis (Oudem) J.J. Davis. Physiological and Molecular Plant Pathology, 28, 3–14.Google Scholar
  74. Matyssek, R., Agerer, R., Ernst, D., Munch, J.-C., Oßwald, W., Pretzsch, H., et al. (2005). The plant’s capacity in regulating resource demand. Plant Biology, 7, 560–580.PubMedGoogle Scholar
  75. Mauricio, R., Rauscher, M. D., & Burdick, D. S. (1997). Variation in the defense strategies of plants: Are resistance and tolerance mutually exclusive? Ecology, 78, 1301–1311.Google Scholar
  76. Meyer, S., Saccardt, A. K., Rizza, F., & Gentry, B. (2001). Inhibition of photosynthesis by Colletotrichum lindemuthianum in bean determined by chlorophyll fluorescence imaging. Plant, Cell & Environment, 24, 947–955.Google Scholar
  77. Minchin, P. E. H., & Lacointe, A. (2005). New understanding on phloem physiology and possible consequences for modelling long-distance carbon transport. New Phytologist, 116, 771–779.Google Scholar
  78. Munier-Jolain, N. G., & Ney, B. (1998). Analysis of seed growth rate for different species of grain legumes. II - Cotyledon cell number and seed growth rate in Pea (Pisum sativum L.). Journal of Experimental Botany, 49, 1971–1976.Google Scholar
  79. Murray, D., & Walters, D. R. (1992). Increased photosynthesis and resistance to rust infection in upper, uninfected leaves of rusted broad bean (Vicia faba L.). New Phytologist, 120, 235–242.Google Scholar
  80. Mussell, H. W., & Malone, M. J. (1979). Disease tolerance: reducing the impact of disease-induced stress on crop yields. In H. Mussel, R. C. Staples, & B. Thompson (Eds.), Stress physiology in crop plants (pp. 15–23). New York: John Wiley & Sons.Google Scholar
  81. Nabity, P. D., Zavala, J. A., & DeLucia, E. H. (2009). Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Annals of Botany, 103, 655–663.PubMedGoogle Scholar
  82. Neth, J. (1992). Evaluation of breeding strategies for resistance and tolerance to late blight in potato by means of simulation. Plant Pathology, 98, 3–11.Google Scholar
  83. Newingham, B. A., Callaway, R. M., & BassiriRad, H. (2007). Allocating nitrogen away from a herbivore: a novel compensatory response to root herbivory. Oecologia, 153, 913–920.PubMedGoogle Scholar
  84. Oliver, P. R., & Ipcho, S. V. S. (2004). Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Molecular Plant Pathology, 5, 347–352.PubMedGoogle Scholar
  85. Oliver, T. H., Leather, S. R., & Cook, J. M. (2009). Tolerance traits and the stability of mutualism. Oikos, 118, 346–352.Google Scholar
  86. Parker, S. R., Welham, S., Paveley, N. D., Foulkes, J., & Scott, R. K. (2004). Tolerance of septoria leaf blotch in winter wheat. Plant Pathology, 53, 1–10.Google Scholar
  87. Parry, M., Reynolds, M., Salvucci, M., Raines, C. A., Andralojc, P. J., Zhu, X. G., et al. (2011). Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany, 62, 453–467.PubMedGoogle Scholar
  88. Paveley, N. D., Sylvester-Bradley, R., Scott, R. K., Craigon, J., & Day, W. (2001). Steps in predicting the relationship of yield on fungicide dose. Phytopathology, 91, 708–716.PubMedGoogle Scholar
  89. Paveley, N. D., Smith, J. S., & Foulkes, J. (2008). Traits for reduced fungicide dependence. In Cereal Pathosystems (pp. 35–47). London: BSPP.Google Scholar
  90. Pinet, A. (2010). Analyse de la plasticité du puits reproducteur du colza suite à une suppression de boutons floraux : conséquences sur le rapport source: puits et le rendement. PhD dissertation. University of Paris. AgroParisTech. 141p.Google Scholar
  91. Reynolds, M. P., Pellegrineschi, A., & Skovmand, B. (2005). Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Annals of Applied Biology, 146, 39–49.Google Scholar
  92. Reynolds, M. P., Calderini, D., Ciondon, A., & Vargas, M. (2007). Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Science, 47, 172–178.Google Scholar
  93. Reynolds, M., Manes, Y., Izanloo, A., & Langridge, P. (2009). Phenotyping approaches for physiological breeding and gene discovery in wheat. Annals of Applied Biology, 155, 309–320.Google Scholar
  94. Robb, J. (2007). Verticillium tolerance: resistance, susceptibility or mutualism? Canadian Journal of Botany, 85, 903–910.Google Scholar
  95. Robert, C., Bancal, M.-O., Nicolas, P., Lannou, C., & Ney, B. (2004). Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth. Journal of Experimental Botany, 55, 1079–1094.PubMedGoogle Scholar
  96. Robert, C., Bancal, M.-O., Ney, B., & Lannou, C. (2005). Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. New Phytologist, 165, 227–241.PubMedGoogle Scholar
  97. Robert, C., Bancal, M.-O., Lannou, C., & Ney, B. (2006). Quantification of the effects of Septoria tritici blotch on wheat leaf gas exchange with respect to lesion age, leaf number, and leaf nitrogen status. Journal of Experimental Botany, 57, 225–234.PubMedGoogle Scholar
  98. Robert, C., Fournier, C., Dornbusch, T., Andrieu, B. & Gouache, D. (2010). Using a functional-structural plant model to design wheat ideotypes and assess their performance regarding potentials of biomass production, weed suppression and disease escape. 6th International workshop on Functional - Structural Plant Model. Davis, USA.Google Scholar
  99. Roberts, A. M., & Walters, D. R. (1986). Stimulation of photosynthesis in uninfected leaves of rust-infected leeks. Annals of Botany, 56, 893–896.Google Scholar
  100. Rolfe, S. A., & Scholes, J. D. (2010). Chlorophyll fluorescence imaging of plant-pathogen interactions. Protoplasma, 247, 163–175.PubMedGoogle Scholar
  101. Rooney, J. M., & Hoad, G. V. (1989). Compensation in growth and photosynthesis of wheat (Tritcum aestivum L.) following early inoculations with Septoria nodurum (Berk.). New Phytologist, 113, 513–521.Google Scholar
  102. Rosenthal, J. P., & Welter, S. C. (1995). Tolerance to herbivory by a stemboring caterpillar in architecturally distinct maizes and wild relatives. Oecologia, 102, 146–155.Google Scholar
  103. Rossing, W. A. H., van Oijen, M., van der Werf, W., Bastiaans, L., & Rabbinge, R. (1992). Modelling the effects of foliar pests and pathogens on light interception, photosynthesis, growth rate and yield of field crops. In P. G. Ayres (Ed.), Pests and Pathogens. Plant responses to foliar attack (pp. 161–180). Oxford: Bios Scientific Publishers.Google Scholar
  104. Roux, F., Gao, L., & Bergelson, J. (2010). Impact of initial pathogen density on resistance and tolerance in a polymorphic disease resistance gene system in Arabidopsis thaliana. Genetics, 185, 283–291.PubMedGoogle Scholar
  105. Roy, B. A., & Kirchner, J. W. (2000). Evolutionary dynamics of pathogen resistance and tolerance. Evolution, 54, 51–63.PubMedGoogle Scholar
  106. Sadras, V. O. (2000). Variation in apical dominance and its implications for herbivory resistance, competitive ability, and biomasspartitioning. In M. E. Otegui & G. A. Slafer (Eds.), Physiology Bases for Maize Improvement (p. 217). Chesterfield: Food Products Press.Google Scholar
  107. Savary, S., Teng, P. S., Willocquet, L., & Nutter, F. W. J. (2006). Quantification and modeling of crop losses: a review of purposes. Annual Review of Phytopathology, 44, 89–112.PubMedGoogle Scholar
  108. Schafer, J. F. (1971). Tolerance to plant disease. Annual Review of Phytopathology, 9, 235–252.Google Scholar
  109. Schoeny, A., Jeuffroy, M.-H., & Lucas, P. (2003). Influence of take-all epidemics on winter wheat yield formation and yield loss. Phytopathology, 91, 694–701.Google Scholar
  110. Scholes, J. D., & Rolfe, S. A. (1996). Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence. Planta, 199, 573–582.Google Scholar
  111. Scholes, J. D., & Rolfe, S. A. (2009). Chlorophyll fluorescence imaging as a tool for understanding the impact of fungal; diseases on plant performance: a phenomics perspective. Functional Plant Biology, 36, 880–892.Google Scholar
  112. Schwachtje, J., & Baldwin, I. T. (2008). Why does herbivore attack reconure primary metabolism? Plant Physiology, 146, 845–851.PubMedGoogle Scholar
  113. Schwachtje, J., Minchin, P. E. H., Jahnke, S., van Dongen, J. T., Schittko, U., & Baldwin, I. T. (2006). SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proceedings of the National Academy of Sciences of the United States of America, 103, 12935–12940.PubMedGoogle Scholar
  114. Serrago, R., Carretero, R., Bancal, M.-O., & Miralles, D. J. (2011). Grain weight response to foliar diseases control in wheat (Triticum aestivum L.). Field Crops Research, 120, 352–359.Google Scholar
  115. Shaw, M. W., & Osborne, T. M. (2011). Geographic distribution of plant pathogens in response to climate change. Plant Pathology, 60, 31–43.Google Scholar
  116. Shtienberg, D. (1992). Effects of foliar diseases on gas exchange processes: a comparative study. Phytopathology, 82, 760–765.Google Scholar
  117. Smedegaard-Petersen, V., & Tolstrup, K. (1985). The limiting effect of disease resistance on yield. Annual Review of Phytopathology, 23, 475–490.Google Scholar
  118. Spink, J. H., Semere, T., Sparkes, D. L., Whaley, J. M., Foulkes, M. J., Clare, R. W., et al. (2000). Effect of sowing date on the optimum plant density of winter wheat. Annals of Applied Biology, 137, 179–188.Google Scholar
  119. Spitters, C. J., van Roermund, H. J. W., van Nassau, H. G. M. G., Scheper, J., & Mesdag, J. (1990). Genetic variation in partial resistance to leaf rust in winter wheat: disease progress, foliage senescence and yield reduction. Netherlands Journal of Plant Pathology, 96, 3–15.Google Scholar
  120. Strauss, S., & Aggrawal, A. (1999). The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evolution, 14, 179–185.Google Scholar
  121. Swarbrick, P. J., Schulze-Lefert, P., & Scholes, J. D. (2006). Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell & Environment, 29, 1061–1076.Google Scholar
  122. Sylvester-Bradley, R., & Wiseman, J. (2005). Yields of Farmed Species. In Proceedings of the 61st Easter School in Agricultural Sciences. UK: Nottingham University Press.Google Scholar
  123. Sylvester-Bradley, R., Riffkin, P., & O’Leary, G. (2012). Designing resource-efficient ideotypes for new cropping conditions: Wheat (Triticum aestivum L.) in the high rainfall zone of South Australia. Field Crops Research, 125, 69–82.Google Scholar
  124. Tang, J., Zielinski, R., Aldea, M., & DeLucia, E. (2009). Spatial association of photosynthesis and chemical defense in Arabidopsis thaliana following herbivory by Trichoplusia ni. Physiologia Plantarum, 1347, 115–124.Google Scholar
  125. Thomson, V. P., Cunningham, S. A., Ball, M. C., & Nicotra, A. B. (2003). Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia, 134, 167–175.PubMedGoogle Scholar
  126. Tiffin, P. (2000). Mechanisms of tolerance to herbivore damage: what do we know? Evolutionary Ecology, 14, 523–536.Google Scholar
  127. Tiffin, P. (2002). Competition and time of damage affect the pattern of selection acting on plant defense against herbivores. Ecology, 83, 1981–1990.Google Scholar
  128. Tiffin, P., & Rausher, M. D. (1999). Genetic constraints and selection acting on tolerance to herbivory in the common morning glory Ipomoea purpurea. American Naturalist, 154, 700–716.PubMedGoogle Scholar
  129. Vannette, R. L., & Hunter, M. D. (2011). Plant defense theory re-examined: nonlinear expectations based on the costs and benefits of resource mutualisms. Journal of Ecology, 99, 66–76.Google Scholar
  130. Waggoner, P. E., & Berger, R. D. (1987). Defoliation, disease and growth. Phytopathology, 77, 393–398.Google Scholar
  131. Walters, D. R., & McRoberts, N. (2006). Plants and biotrophs: a pivotal role for cytokinins? Trends in Plant Science, 11, 581–586.PubMedGoogle Scholar
  132. West, S. J., Townsend, J. A., Stevens, M., & Fitt, B. D. L. (2012). Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. European Journal of Plant Pathology, 133, 315–331.Google Scholar
  133. Williams, G. M., & Ayres, P. G. (1981). Effects of powdery mildew and water stress on CO2 exchanges in uninfected leaves of barley plants. Plant Physiology, 68, 527–530.PubMedGoogle Scholar
  134. Wise, M. J., & Abrahamson, W. G. (2005). Beyond compensatory continuum: environmental and plant tolerance herbivory. Oikos, 109, 417–428.Google Scholar
  135. Zangerl, A. R., Hamilton, J. G., Miller, T. J., Crofts, A. R., Oxborough, K., Berenbaum, M. R., et al. (2002). Impact of folivory on photosynthesis is greater than the sum of its holes. Proceedings of the National Academy of Sciences of the United States of America, 99, 1088–1091.PubMedGoogle Scholar
  136. Zuckerman, E., Eshal, A., & Eyal, Z. (1997). Physiological aspects related to tolerance of spring wheat cultivars to Septoria tritici blotch. Phytopathology, 87, 60–65.PubMedGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • B. Ney
    • 1
  • M. O. Bancal
    • 1
  • P. Bancal
    • 2
  • I. J. Bingham
    • 3
  • J. Foulkes
    • 4
  • D. Gouache
    • 5
  • N. Paveley
    • 6
  • J. Smith
    • 6
  1. 1.AgroParisTech, UMR 1091 INRA-AgroParisTech Environnement et Grandes culturesThiverval-GrignonFrance
  2. 2.INRA, UMR 1091 INRA-AgroParisTech Environnement et Grandes culturesThiverval-GrignonFrance
  3. 3.Crop & Soil Systems Research Group, SRUCEdinburghUK
  4. 4.Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLoughboroughUK
  5. 5.ARVALIS - Institut du Végétal, Service Génétique Physiologie et Protection des PlantesIBP - Université Paris SudOrsay CedexFrance
  6. 6.ADAS UK Ltd, Sustainable Crop ManagementHerefordUK

Personalised recommendations