Advertisement

European Journal of Plant Pathology

, Volume 135, Issue 4, pp 791–804 | Cite as

Diversity of Botryosphaeriaceae species associated with conifers in Portugal

  • Artur Alves
  • Carla Barradas
  • Alan J. L. Phillips
  • António Correia
Article

Abstract

Botryosphaeriaceous fungi were isolated from conifers showing disease symptoms such as diebacks, blights, and cankers. The isolates were grouped based on morphology and ERIC-PCR fingerprinting patterns and representatives of each group were identified by sequencing of the internal transcribed spacer (ITS) region. Nine species from four different genera in Botryosphaeriaceae were identified within the isolates. Many new fungus-host associations were established and several species of Botryosphaeriaceae are reported from conifers for the first time. Most of these species also represent new reports from Portugal. The genus Neofusicoccum that was thought to be mainly restricted to angiosperms was the most frequent within the collection of isolates, followed by Diplodia. Dothiorella and Botryosphaeria represented a minor fraction of the isolates. Interestingly, the most common species was N. luteum, which had never been reported from coniferous hosts. Our results indicate that Neofusicoccum species may be more important as pathogens of conifers than it was previously recognised.

Keywords

Botryosphaeriaceae Canker Conifers Dieback New records 

Notes

Acknowledgments

Artur Alves was supported by the programme Ciência2008, co-funded by the Human Potential Operational Programme (National Strategic Reference Framework 2007–2013) and European Social Fund (EU). Carla Barradas was supported by a PhD grant from FCT (SFRH/BD/77939/2011).

References

  1. Abdollahzadeh, J., Goltapeh, E. M., Javadi, A., Shams-bakhsh, M., Zare, R., & Phillips, A. J. L. (2009). Barriopsis iraniana and Phaeobotryon cupressi: two new species of the Botryosphaeriaceae from trees in Iran. Persoonia, 23, 1–8.PubMedCrossRefGoogle Scholar
  2. Alves, A., Correia, A., Luque, J., & Phillips, A. J. L. (2004). Botryosphaeria corticola sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph Diplodia mutila. Mycologia, 96, 598–613.PubMedCrossRefGoogle Scholar
  3. Alves, A., Correia, A., & Phillips, A. J. L. (2006). Multigene genealogies and morphological data support Diplodia cupressi sp. nov., previously recognized as Diplodia pinea f. sp. cupressi as a distinct species. Fungal Diversity, 23, 1–15.Google Scholar
  4. Alves, A., Phillips, A. J. L., Henriques, I., & Correia, A. (2007). Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Research in Microbiology, 158, 112–121.PubMedCrossRefGoogle Scholar
  5. Azouaoui-Idjer, G., Della Rocca, G., Pecchioli, A., Bouznad, Z., & Danti, R. (2012). First report of Botryosphaeria iberica associated with dieback and tree mortality of monterey cypress (Cupressus macrocarpa) in Algeria. Plant Disease, 96, 1073.CrossRefGoogle Scholar
  6. Barr, M. E. (1987). Prodromus to class Loculoascomycetes. Amherst, Massachusetts: Publ. by the author.Google Scholar
  7. Bettucci, L., Alonso, R., & Tiscornia, S. (1999). Endophytic mycobiota of healthy twigs and the assemblage of species associated with twig lesions of Eucalyptus globulus and E. grandis in Uruguay. Mycological Research, 103, 468–472.CrossRefGoogle Scholar
  8. Bettucci, L., Simeto, S., Alonso, R., & Lupo, S. (2004). Endophytic fungi of twigs and leaves of three native species of Myrtaceae in Uruguay. Sydowia, 56, 8–23.Google Scholar
  9. Crous, P. W., Slippers, B., Wingfield, M. J., Rheeder, J., Marasas, W. F. O., Phillips, A. J. L., et al. (2006). Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology, 55, 235–253.PubMedCrossRefGoogle Scholar
  10. Damm, U., Crous, P. W., & Fourie, P. H. (2007). Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia, 99, 664–680.PubMedCrossRefGoogle Scholar
  11. De Wet, J., Slippers, B., Preisig, O., Wingfield, B. D., & Wingfield, M. J. (2008). Phylogeny of the Botryosphaeriaceae reveals patterns of host association. Molecular Phylogenetics and Evolution, 46, 116–126.PubMedCrossRefGoogle Scholar
  12. De Wet, J., Slippers, B., Preisig, O., Wingfield, B. D., Tsopelas, P., & Wingfield, M. J. (2009). Molecular and morphological characterization of Dothiorella casuarini sp. nov. and other Botryosphaeriaceae with diplodia-like conidia. Mycologia, 101, 503–511.PubMedCrossRefGoogle Scholar
  13. Eldridge, K. G. (1961). Significance of Diplodia pinea in plantations. Review of Applied Mycology, 41, 339.Google Scholar
  14. Encinas, M. (2001). Association of Diplodia mutila with blue stain of Caribbean pine in Venezuela. Forest Pathology, 31, 187–189.CrossRefGoogle Scholar
  15. Farr, D. F., & Rossman, A. Y. (2012). Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/. Accessed 5 September 2012.
  16. Flowers, J., Hartman, J., & Vaillancourt, L. (2003). Detection of latent Sphaeropsis sapinea infections in Austrian pine tissues using nested polymerase chain reaction. Phytopathology, 93, 1471–1477.PubMedCrossRefGoogle Scholar
  17. Funk, A. (1964). Botryosphaeria tsugae n. sp. causing dieback of western hemlock in British Columbia. Canadian Journal of Botany, 42, 769–775.CrossRefGoogle Scholar
  18. Gadgil, P. D. (2005). Fungi on trees and shrubs in New Zealand. Fungi of New Zealand Volume 4. Hong Kong: Fungal Diversity Press.Google Scholar
  19. Golzar, H., & Burgess, T. I. (2011). Neofusicoccum parvum, a causal agent associated with cankers and decline of Norfolk Island pine in Australia. Australasian Plant Pathology, 40, 484–489.CrossRefGoogle Scholar
  20. Gure, A., Slippers, B., & Stenlid, J. (2005). Seed-borne Botryosphaeria spp. from native Prunus and Podocarpus trees in Ethiopia, with a description of the anamorph Diplodia rosulata sp. nov. Mycological Research, 109, 1005–1014.PubMedCrossRefGoogle Scholar
  21. Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192.Google Scholar
  22. Inderbitzin, P., Bostock, R. M., Trouillas, F. P., & Michailides, T. J. (2010). A six locus phylogeny reveals high species diversity in Botryosphaeriaceae from California almond. Mycologia, 102, 1350–1368.PubMedCrossRefGoogle Scholar
  23. Lazzizera, C., Frisullo, S., Alves, A., Lopes, J., & Phillips, A. J. L. (2008). Phylogeny and morphology of Diplodia species on olives in southern Italy and description of Diplodia olivarum. Fungal Diversity, 31, 63–71.Google Scholar
  24. Li, S. B., Li, J. Z., Li, S. C., Lu, Z. H., Wang, J. H., & Zhang, H. (2010). First report of Neofusicoccum parvum causing dieback disease of Chinese weeping cypress in China. Plant Disease, 94, 641.CrossRefGoogle Scholar
  25. Linaldeddu, B. T., Scanu, B., & Franceschini, A. (2010). First report of Diplodia scrobiculata causing canker and branch dieback on strawberry tree (Arbutus unedo) in Italy. Plant Disease, 94, 919.CrossRefGoogle Scholar
  26. Linaldeddu, B. T., Scanu, B., Maddau, L., & Franceschini, A. (2011). Diplodia africana causing dieback disease on Juniperus phoenicea: a new host and first report in the northern hemisphere. Phytopathologia Mediterranea, 50, 473–477.Google Scholar
  27. Ma, Z., & Michailides, T. J. (2002). Characterization of Botryosphaeria dothidea isolates collected from pistachio and other plant hosts in California. Phytopathology, 92, 519–526.PubMedCrossRefGoogle Scholar
  28. McDonald, V., & Eskalen, A. (2011). Botryosphaeriaceae species associated with avocado branch cankers in California. Plant Disease, 95, 1465–1473.CrossRefGoogle Scholar
  29. McKenzie, E. H. C., Buchanan, P. K., & Johnston, P. R. (2000). Checklist of fungi on Nothofagus species in New Zealand. New Zealand Journal of Botany, 38, 635–720.CrossRefGoogle Scholar
  30. Mohali, S. R., Slippers, B., & Wingfield, M. J. (2007). Identification of Botryosphaeriaceae from Eucalyptus, Acacia and Pinus in Venezuela. Fungal Diversity, 25, 103–125.Google Scholar
  31. Page, R. D. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358.PubMedGoogle Scholar
  32. Pavlic, D., Wingfield, M. J., Barber, P., Slippers, B., Hardy, G. E., St, J., et al. (2008). Seven new species of the Botryosphaeriaceae from baobab and other native trees in Western Australia. Mycologia, 100, 851–866.PubMedCrossRefGoogle Scholar
  33. Phillips, A. J. L., Alves, A., Correia, A., & Luque, J. (2005). Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia, 97, 513–529.PubMedCrossRefGoogle Scholar
  34. Piškur, B., Pavlic, D., Slippers, B., Ogris, N., Maresi, G., Wingfield, M. J., et al. (2011). Diversity and pathogenicity of Botryosphaeriaceae on declining Ostrya carpinifolia in Slovenia and Italy following extreme weather conditions. European Journal of Forest Research, 130, 235–249.CrossRefGoogle Scholar
  35. Punithalingam, E., & Waterston, J. M. (1970). Diplodia pinea. Descriptions of pathogenic fungi and bacteria, No. 273. Commonwealth Mycological Institute, Kew, Surrey, England.Google Scholar
  36. Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution, 43, 304–311.PubMedCrossRefGoogle Scholar
  37. Rodriguez, F., Oliver, J. F., Marin, A., & Medina, J. R. (1990). The general stochastic model of nucleotide substitutions. Journal of Theoretical Biology, 142, 485–501.PubMedCrossRefGoogle Scholar
  38. Ronquist, F. R., & Huelsenbeck, J. P. (2003). MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.PubMedCrossRefGoogle Scholar
  39. Slippers, B., & Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21, 90–106.CrossRefGoogle Scholar
  40. Slippers, B., Fourie, G., Crous, P. W., Coutinho, T. A., Wingfield, B. D., & Wingfield, M. J. (2004). Multiple gene sequences delimit Botryosphaeria australis sp. nov. from B. lutea. Mycologia, 96, 1030–1041.PubMedCrossRefGoogle Scholar
  41. Slippers, B., Crous, P. W., Denman, S., Coutinho, T. A., Wingfield, B. D., & Wingfield, M. J. (2004). Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia, 96, 83–101.PubMedCrossRefGoogle Scholar
  42. Slippers, B., Summerel, B. A., Crous, P. W., Coutinho, T. A., Wingfield, B. D., & Wingfield, M. J. (2005). Preliminary studies on Botryosphaeria species from Southern Hemisphere conifers in Australasia and South Africa. Australasian Plant Pathology, 34, 213–220.CrossRefGoogle Scholar
  43. Slippers, B., Smit, W. A., Crous, P. W., Coutinho, T. A., Wingfield, B. D., & Wingfield, M. J. (2007). Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world. Plant Pathology, 56, 128–139.CrossRefGoogle Scholar
  44. Smith, D. R., & Stanosz, G. R. (2001). Molecular and morphological differentiation of Botryosphaeria dothidea (anamorph Fusicoccum aesculi) from some other fungi with Fusicoccum anamorphs. Mycologia, 93, 505–515.CrossRefGoogle Scholar
  45. Stanosz, G. (1997). Sphaeropsis shoot blight and canker. In E. M. Hansen & K. J. Lewis (Eds.), Compendium of conifer diseases (pp. 42–43). MN: The American Phytopathological Society.Google Scholar
  46. Sutton, B. C. (1980). The coelomycetes. Kew, UK: Commonwealth Mycological Institute.Google Scholar
  47. Swofford, D. L. (2003). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
  48. Taylor, K., Barber, P. A., Hardy, G. E. S. J., & Burgess, T. I. (2009). Botryosphaeriaceae from tuart (Eucalyptus gomphocephala) woodland, including the description of four new species. Mycological Research, 113, 337–353.PubMedCrossRefGoogle Scholar
  49. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.PubMedCrossRefGoogle Scholar
  50. Úrbez-Torres, J. R., & Gubler, W. D. (2009). Pathogenicity of Botryosphaeriaceae species isolated from grapevine cankers in California. Plant Disease, 93, 584–592.CrossRefGoogle Scholar
  51. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplified and direct sequencing of fungal ribosomal RNA genes for phylogenies. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic.Google Scholar
  52. Young, N. D. & Healy, J. (2003). GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics, 4, art. 6.Google Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Artur Alves
    • 1
  • Carla Barradas
    • 1
  • Alan J. L. Phillips
    • 2
  • António Correia
    • 1
  1. 1.Departamento de Biologia, CESAMUniversidade de AveiroAveiroPortugal
  2. 2.Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations