European Journal of Plant Pathology

, Volume 134, Issue 3, pp 605–617 | Cite as

Effect of variety choice, resistant rootstocks and chitin soil amendments on soil-borne diseases in soil-based, protected tomato production systems

  • Charilaos Giotis
  • Afroditi Theodoropoulou
  • Julia Cooper
  • Robert Hodgson
  • Peter Shotton
  • Robert Shiel
  • Mick Eyre
  • Steve Wilcockson
  • Emilia Markellou
  • Aglaia Liopa-Tsakalidis
  • Nikolaos Volakakis
  • Carlo LeifertEmail author


Soil-borne diseases are the most significant crop protection problem in soil-based, low-input and especially organic glasshouse production systems in Europe. While chemical soil disinfestation has been the control method of choice in conventional farming systems, soil steaming has been the main strategy for the control of soil-borne diseases in organic production. Both methods are extremely expensive and have been increasingly restricted for environmental reasons by governments, and integrated and organic farming standard-setting bodies. The use of disease-tolerant varieties, grafting onto resistant rootstocks and chitin soil amendments were evaluated as potential replacements for soil steaming in organic and other low-input tomato production systems. When only Pyrenochaeta lycopersici and/or Meloidogyne spp. were present in soil, grafting and/or chitin soil amendment were found to be as effective in reducing root disease and/or increasing yield as soil steaming, but the efficacy of both treatments was reduced when Verticillum albo-atrum was also present in soil. No additive effects of combining grafting and chitin soil amendments could be detected. A more widespread use of grafting and/or chitin soil amendments may therefore allow significant reductions in the use of steam and chemical soil disinfestation in glasshouse crops. It will also allow integrated and organic farming standard-setting bodies to impose further restrictions on the use of soil disinfestation treatments.


Meloidogyne spp. Pyrenochaeta lycopersici Verticillium spp. 



The authors are grateful for funding from the European Community financial participation under the Sixth Framework Programme for Research, Technological Development and Demonstration Activities for the Integrated Project QUALITYLOWINPUTFOOD, FP6-FOOD-CT-2003- 506358. Financial and technical support from Cantelo Nursery Ltd. (Somerset, UK), Theodoropoulos farms (Nafpaktos, Greece), Giotis farms (Ioannina, Greece) and Geokomi plc (Sivas, Crete, Greece) is also gratefully acknowledged.


  1. Abbasi, P. A., Al-Dahmani, J., Sahin, F., Hoitink, H. A. J., & Miller, S. A. (2002). Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Disease, 86, 156–161.CrossRefGoogle Scholar
  2. Atherton, J. G., & Rudich, J. (1986). The tomato crop: A scientific basis for improvement. London: Chapman and Hall.Google Scholar
  3. Barber, M. S., Bertram, R. E., & Ride, J. P. (1989). Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiological and Molecular Plant Pathology, 34, 3–12.CrossRefGoogle Scholar
  4. Beckman, C. H., & Talboys, P. W. (1981). Anatomy of resistance. In M. E. Mace, A. A. Bell, & C. H. Beckman (Eds.), Fungal wilt diseases of plants (pp. 487–521). New York: Academic.Google Scholar
  5. Benhamou, N., Kloepper, J. W., & Tuzun, S. (1998). Induction of resistance against Fusarium wilt of tomato by combination of chitosan with endophytic bacteria strain: Ultrastructure and cytochemistry of the host response. Planta, 204, 153–168.CrossRefGoogle Scholar
  6. Bennett, A. J., Leifert, C., & Whipps, J. M. (2003). Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and non-sterile soils. Soil Biology and Biochemistry, 35, 1565–1573.CrossRefGoogle Scholar
  7. Campbell, R. N., Schweer, V. H., & Hall, D. H. (1982). Corky root of tomato in California caused by pyrenochαetα lycopersici and control by soil fumigation. Plant Disease, 66, 657–661.CrossRefGoogle Scholar
  8. Cascone, G., D'Emilio, A., Polizzi, G., Grillo, R. (2000). Effectiveness of greenhouse soil solarization with different plastic mulches in controlling corky root and root-knot on tomato plants. Acta Horticulturae, 145–150.Google Scholar
  9. Ciccarese, F., & Cirulli, M. (1983). Comportamento di cultivar e linee di pomodor verso la suberosita radicale. Informatore Fitopatologico, 33, 57–59.Google Scholar
  10. Cirulli, M. (1968). Ricerca di fonti di resistenza verso tre malattie del pomodoro in specie di Lycopersicon. Annals of Faculty of the Agricultural University of Bari, 22.Google Scholar
  11. Crawley, M. J. (2007). The R book. Chichester: Wiley.CrossRefGoogle Scholar
  12. De Boer, W., Gerards, S., Klein Gunnewiek, P. J. A., & Modderman, R. (1999). Response of the chitinolytic microbial community to chitin amendments of dune soils. Biology and Fertility of Soils, 29, 170–171.CrossRefGoogle Scholar
  13. Di Vito, M., Lamberti, F., & Carella, A. (1979). La resistenza del pomodoro nei confronti dei nematodi galligeni: Prospettive e possibilità. Rivista di Agronomia, 13, 313–322.Google Scholar
  14. Drinkwater, L. E., Letourneau, D. K., Workneh, F., Vanbruggen, A. H. C., & Shennan, C. (1995). Fundamental differences between conventional and organic tomato agroecosystems in California. Ecological Applications, 5, 1098–1112.CrossRefGoogle Scholar
  15. Ebben, M. H., Smith, J. W. M., & Turner, E. A. (1978). Tolerance of tomatoes to Pyrenochaeta lycopersici: Comparison of a tolerant line with a susceptible cultivar in infested soils. Plant Pathology, 27, 91–96.CrossRefGoogle Scholar
  16. Ellis, S. (2002). The use of chitin in sugar beet. British Sugar Beet Review, 68, 12–17.Google Scholar
  17. Giotis, H., Markelou, E., Theodoropoulou, A., Toufexi, E., Hodson, R., Shotton, P., Shiel, R., Cooper, J., & Leifert, C. (2009). Effect of soil amendments and biological control agents on soil borne root diseases caused by Pyrenochaeta lycopersici and Verticillum albo-atrum in organic greenhouse tomoato production systems. European Journal of Plant Pathology, 123, 387–400.CrossRefGoogle Scholar
  18. Giotis, H., Toufexi, E., Theodoropoulou, A., Dafermos, N. E. M., Kasselaki, A. N. M., & Leifert, C. (2006). Effect of soil steaming, amendments and resistant rootstocks on soil borne disease incidence and yields and in organic tomato production systems. Aspects of Applied Biology, 80, 127–133.Google Scholar
  19. Granges, A., & Leger, A. (1996). Comparison between tomato plants grafted with one or two stems and with soil steaming in the glasshouse. Revue Suisse de Viticulture, d’Arboriculture et d’Horticulture, 28, 389–392.Google Scholar
  20. Gravel, V., Blok, W., Hallmann, E., Carmona-Torres, C., Wang, H. Y., Van de Peppel, A., Golec, A. F. C., Dorais, M., Van Meeterens, U., Heuvelink, E., Rembialkowska, E., & Van Bruggen, A. H. C. (2010). Differences in N uptake and fruit quality between organically and conventionally grown greenhouse tomatoes. Agronomy for Sustainable Development, 30, 797–806.CrossRefGoogle Scholar
  21. Grove, G. G., & Campbell, R. N. (1987). Host range and surνiνal in soil of pyrenochαetα lycopersici. Plant Disease, 71, 806–809.CrossRefGoogle Scholar
  22. Hoggenboom, N. G. (1970). Inheritance of resistance to corky root rot in tomato (Lycopersicon esculelentym Mill). Euphytica, 19, 413–425.CrossRefGoogle Scholar
  23. Lampkin, N. H., & Measures, M. (2001). Organic farm management handbook (4th ed.). Aberystwyth: Welsh Institute of Rural Studies, University of Wales.Google Scholar
  24. Lemaire, J. Μ., Lot, Η., BIancard, D., Lecoq, Η. (1998). Diseases in protected crops–relations with integrated crop protection, EUR Report.RepoR.ΕUR 9386Ε (pp. 134–137).Google Scholar
  25. Lyon, G. D., Reglinski, T., & Newton, C. (1995). Novel disease control compounds: The potential to ‘immunize’ plants against infection. Plant Pathology, 44, 407–427.CrossRefGoogle Scholar
  26. Manjula, K., & Podile, A. R. (2001). Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Canadian Journal of Microbiology, 47, 618–625.PubMedGoogle Scholar
  27. Mazollier, C. (1999). Grafting of tomatoes under protected cultivation. PHM Revue Horticole, 404, 44–48.Google Scholar
  28. Minuto, A., Gullino, M. L., Lamberti, F., D'Addabbo, T., Tescari, E., Ajwa, H., & Garibaldi, A. (2006). Application of an emulsifiable mixture of 1,3-dichloropropene and chloropicrin against root knot nematodes and soilborne fungi for greenhouse tomatoes in Italy. Crop Protection, 25, 1244–1252.CrossRefGoogle Scholar
  29. Morra, L., Correale, A., Bilotto, M., & Restaino, F. (1997). Evaluation of three rootstocks for greenhouse tomatoes. Colture Protette, 26, 69–73.Google Scholar
  30. Patternotte, S. J., & Van Kestern, H. A. (1993). A new agressive strain of Verticillium albo-atrum in Verticillium resistant cultivars of tomato in The Netherlands. Netherlands Journal of Plant Pathology, 99, 169–172.CrossRefGoogle Scholar
  31. Pegg, G. F., & Brady, B. L. (2002). Verticillium wilts. Oxford: CABI Publishing.CrossRefGoogle Scholar
  32. Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-plus. New York: Springer.CrossRefGoogle Scholar
  33. R Development Core Team (2006). R: A language and environment for statistical computing. Accessed 01 July 2012.
  34. Reddy, Μ. V. Β., Arul, Ι., Angers, Ρ., & Couture, L. (1999). Chitosan treatment of wheat seeds induces resistance to Fusαrium grαmineαrum and improves seed quality. Journal of Agriculture and Food Chemistry, 47, 1208–1216.CrossRefGoogle Scholar
  35. Scheffer, R. P. (1997). The nature οf disease in plants. Cambridge: Cambridge University Press.Google Scholar
  36. Shishkoff, N., & Campbell, R. N. (1990). Survival of Pyrenochaeta lycopersici and the influence of temperature and cultivar resistance on the development of corky root of tomato. Plant Disease, 74, 889–894.CrossRefGoogle Scholar
  37. Sink, K., & Grey, W. (1999). Α root-injection method to assess verticillium wilt resistance of peppermint (Mentha χ piperita L.) and its use in identifying resistant somaclones οf cv. Black Mitcham. Euphitica, 106, 223–230.CrossRefGoogle Scholar
  38. Song, H. J., Grant, I., Rotondo, D., Mohede, I., Sattar, N., Heys, S. D., & Wahle, K. W. J. (2005). Effect of CLA supplementation on immune function in young healthy volunteers. European Journal of Clinical Nutrition, 59, 508–517.PubMedCrossRefGoogle Scholar
  39. Tang, S. C., Chang, M. C., & Cheng, C. Y. (1998). Use of colloid chitin and diatomaceous earth in continuous cake-filtration fermentation to produce creatinase. Process Biochemistry, 33, 519–526.CrossRefGoogle Scholar
  40. Termohlen, I. G. P. (1962). Onderzoekingen over kurkwortel van tomaat en over de kurkwortelschimmel. Tijdschr. Plantenziekten, 68, 295–367.Google Scholar
  41. Tjamos, E. C., & Smith, I. M. (1975). The expression of resistance to Verticillium albo-atrum in monogenically resistant tomato varieties. Physiological Plant Pathology, 6, 215–225.CrossRefGoogle Scholar
  42. Vakalounakis, D., & Fragiadakis, G. (2003). Phytopathoveltiosi. Heraclion: Typocreta.Google Scholar
  43. van Loenen, M. C. A., Turbett, Y., Mullins, C. E., Feilden, N. E. H., Wilson, M. J., Leifert, C., & Seel, W. E. (2003). Low temperature-short duration steaming of soil kills soil-borne pathogens, nematode pests and weeds. European Journal of Plant Pathology, 109, 993–1002.CrossRefGoogle Scholar
  44. Williamson, V. M., & Hussey, R. S. (1996). Nematode pathogenesis and resistance in plants. The Plant Cell, 8, 1735–1745.PubMedGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Charilaos Giotis
    • 1
    • 2
  • Afroditi Theodoropoulou
    • 1
  • Julia Cooper
    • 1
  • Robert Hodgson
    • 1
  • Peter Shotton
    • 1
  • Robert Shiel
    • 1
  • Mick Eyre
    • 1
  • Steve Wilcockson
    • 1
  • Emilia Markellou
    • 3
  • Aglaia Liopa-Tsakalidis
    • 4
  • Nikolaos Volakakis
    • 5
  • Carlo Leifert
    • 1
    Email author
  1. 1.Nafferton Ecological Farming Group (NEFG)University of NewcastleNewcastle upon TyneUK
  2. 2.Technological Educational Institute (TEI) of the Ionian IslandsArgostoliGreece
  3. 3.BENAKI Phytopathological InstituteAthensGreece
  4. 4.Department of Agricultural Machinery and IrrigationTechnological Educational Institute (TEI) of MessolongiMessolongiGreece
  5. 5.Geokomi plc, SivasMessaraGreece

Personalised recommendations