Advertisement

European Journal of Plant Pathology

, Volume 134, Issue 3, pp 445–449 | Cite as

Phylodynamics of Pepino mosaic virus in Spain

  • P. GómezEmail author
  • R. N. Sempere
  • M. A. Aranda
  • S. F. Elena
Short Communications

Abstract

Pepino mosaic virus (PepMV) is an emerging pathogen that causes severe economic losses in tomato crops in the Northern hemisphere. After its first identification, the new viral strain PepMV-CH2 has been isolated in several countries worldwide. In order to further understand the evolutionary dynamics of PepMV before and after PepMV-CH2 emergence, we analyzed a collection of PepMV isolates from southeastern Spain, estimating the rate of PepMV molecular evolution and the coalescence process for the effective number of PepMV infections using a Bayesian phylogenetic approach. Our results show that the rate of PepMV molecular evolution was 5.570 × 10−3 substitutions/site/year, a value which is approximately an order of magnitude higher than the rates recently reported for other plant RNA viruses. Moreover, PepMV-CH2 was estimated to have originated in 2000, coincident with the onset of PepMV-CH2 infections in southeastern Spain, its population following now an expansion process. This further illustrates that genetic and ecological interactions among different viral strains can modulate the evolutionary dynamics of PepMV and determine its epidemiological profile.

Keywords

Evolutionary dynamics Molecular epidemiology PepMV Rate of molecular evolution Tomato disease Virus evolution 

Notes

Acknowledgments

We thank an anonymous reviewer for very insightful comments. Work in Murcia was supported by grant EUI2009-04009 (PLANT-KBBE2009 program, Ministerio de Ciencia e Innovación, Spain). Work in Valencia was supported by grant BFU2009-06993 (Ministerio de Ciencia e Innovación, Spain). P.G. was supported by a “Juan de la Cierva” post-doctoral contract from (Ministerio de Ciencia e Innovación, Spain). R.N.S. was the recipient of a graduate fellowship from Fundación Seneca (Murcia, Spain).

Supplementary material

10658_2012_19_MOESM1_ESM.jpg (1.1 mb)
Figure S1 Maximum likelihood phylogenetic tree. This tree was obtained using the TN93 + G model of nucleotide substitutions (Tamura and Nei 1993); henceforth, branch lengths are proportional to genetic distances. Numbers on the nodes represent bootstrap value supports (from 5,000 pseudoreplicates). Only values >90 % are shown (JPEG 1177 kb)

References

  1. Adams, M. J., Antoniw, J. F., Bar-Joseph, M., Brunt, A. A., Candresse, T., Foster, G. D., Martelli, G. P., Milne, R. G., Zavriev, S. K., & Fauquet, C. M. (2004). The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Archives of Virology, 149, 1045–1060.PubMedGoogle Scholar
  2. Aguilar, J. M., Hernandez-Gallarod, M. D., Cenis, J. L., Lacasa, A., & Aranda, M. A. (2002). Complete sequence of the Pepino mosaic virus RNA genome. Archives of Virology, 147, 2009–2015.PubMedCrossRefGoogle Scholar
  3. Alfaro-Fernández, A., Sánchez-Navarro, J., Cebrián, M. D., Córdoba-Sellés, M. D., Pallás, V., & Jordá, C. (2009). Simultaneous detection and identification of Pepino mosaic virus (PepMV) isolates by multiplex one-step RT-PCR. European Journal of Plant Pathology, 125, 143–158.CrossRefGoogle Scholar
  4. Cotillon, A. C., Girard, M., & Ducouret, S. (2002). Complete nucleotide sequence of the genomic RNA of a French isolate of Pepino mosaic virus (PepMV). Archives of Virology, 147, 2231–2238.PubMedCrossRefGoogle Scholar
  5. De la Iglesia, F., Martínez, F., Hillung, J., Cuevas, J. M., Gerrish, P. J., Daròs, J. A., & Elena, S. F. (2012). Luria-Delbrück estimation of Turnip mosaic virus mutation rate in vivo. Journal of Virology, 86, 3386–3388.PubMedCrossRefGoogle Scholar
  6. Drummond, A., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.PubMedCrossRefGoogle Scholar
  7. Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185–1192.PubMedCrossRefGoogle Scholar
  8. Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, 699–710.CrossRefGoogle Scholar
  9. Duffy, S., & Holmes, E. C. (2008). Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus Tomato yellow leaf curl virus. Journal of Virology, 82, 957–965.PubMedCrossRefGoogle Scholar
  10. Duffy, S., Shackelton, L., & Holmes, E. C. (2008). Rates of evolutionary change in viruses: Patterns and determinants. Nature Reviews Genetics, 9, 267–276.PubMedCrossRefGoogle Scholar
  11. EPPO (2009). EPPO alert list-viruses. Pepino mosaic potexvirus—a new virus of tomato introduced into Europe. www.eppo.org/QUARANTINE/Alert_List/alert_list.htm.
  12. Fargette, D., Pinel, A., Rakotomalala, M., Sangu, E., Traore, O., Sereme, D., Sorho, F., Issaka, S., Hebrard, E., Sere, Y., Kanyeka, Z., & Konate, G. (2008). Rice yellow mottle virus, an RNA plant virus, evolves as rapidly as most RNA animal viruses. Journal of Virology, 82, 3584–3589.PubMedCrossRefGoogle Scholar
  13. Gibbs, A. J., Ohshima, K., Phillips, M. J., & Gibbs, M. J. (2008). The prehistory of potyviruses: Their initial radiation was during the dawn of agriculture. PLoS One, 3, e2523.PubMedCrossRefGoogle Scholar
  14. Gómez, P., Sempere, R. N., Elena, S. F., & Aranda, M. A. (2009). Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. Journal of Virology, 83, 12378–12387.PubMedCrossRefGoogle Scholar
  15. Gómez, P., Sempere, R. N., Aranda, M. A. (2012). Pepino mosaic virus and tomato torrado virus: Two emerging viruses affecting tomato crops in the Mediterranean basin. In G. Loebenstein, & H. Lecoq (Eds.), Advances in virus research (pp. 505–532). Academic Press.Google Scholar
  16. Hanssen, I. M., & Thomma, B. (2010). Pepino mosaic virus: A successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Molecular Plant Pathology, 11, 179–189.PubMedCrossRefGoogle Scholar
  17. Hanssen, I. M., Paeleman, A., Wittemans, L., Goen, K., Lievens, B., Bragard, C., Vanachter, A., & Thomma, B. (2008). Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. European Journal of Plant Pathology, 121, 131–146.CrossRefGoogle Scholar
  18. Hasiów-Jaroszewska, B., Borodynko, N., Jackowiak, P., Figlerowicz, M., & Pospieszny, H. (2010). Pepino mosaic virus—a pathogen of tomato crops in Poland: Biology, evolution and diagnostics. Journal of Plant Protection Research, 50, 470–476.CrossRefGoogle Scholar
  19. Jones, R. A. C., Koenig, R., & Lesemann, D. E. (1980). Pepino mosaic virus, a new potexvirus from pepino (Solanum muricantum). Annals of Applied Biology, 94, 61–68.CrossRefGoogle Scholar
  20. Ling, K. S., Wintermantel, W. M., & Bledsoe, M. (2008). Genetic composition of Pepino mosaic virus population in North American greenhouse tomatoes. Plant Disease, 92, 1683–1688.CrossRefGoogle Scholar
  21. Malpica, J. M., Fraile, A., Moreno, I., Obies, C. I., Drake, J. W., & García-Arenal, F. (2002). The rate and character of spontaneous mutation in an RNA virus. Genetics, 162, 1505–1511.PubMedGoogle Scholar
  22. Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., & Lefeuvre, P. (2010). RDP3: A flexible and fast computer program for analyzing recombination. Bioinformatics, 26, 2462–2463.PubMedCrossRefGoogle Scholar
  23. Mumford, R. A., & Metcalfe, E. J. (2001). The partial sequencing of the genomic RNA of a UK isolate of Pepino mosaic virus and the comparison of the coat protein sequence with other isolates from Europe and Peru. Archives of Virology, 146, 2455–2460.PubMedCrossRefGoogle Scholar
  24. Pagán, I., Cordoba-Selles, M., Martínez-Priego, L., Fraile, A., Malpica, J., Jordá, C., & García-Arenal, F. (2006). Genetic structure of the population of Pepino mosaic virus infecting tomato crops in Spain. Phytopathology, 96, 274–279.PubMedCrossRefGoogle Scholar
  25. Sanjuán, R. (2012). From molecular genetics to phylodynamics: Evolutionary relevance of mutation rates across viruses. PLoS Pathogens, 8, e1002685.PubMedCrossRefGoogle Scholar
  26. Sanjuán, R., Agudelo-Romero, P., & Elena, S. F. (2009). Upper-limit mutation rate estimation for a plant RNA virus. Biology Letters, 5, 394–396.PubMedCrossRefGoogle Scholar
  27. Simmons, H. E., Holmes, E. C., & Stephenson, A. G. (2008). Rapid evolutionary dynamics of Zucchini yellow mosaic virus. Journal of General Virology, 89, 1081–1085.PubMedCrossRefGoogle Scholar
  28. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.PubMedGoogle Scholar
  29. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCrossRefGoogle Scholar
  30. Tromas, N., & Elena, S. F. (2010). The rate and spectrum of spontaneous mutations in a plant RNA virus. Genetics, 185, 983–989.PubMedCrossRefGoogle Scholar
  31. Van der Vlugt, R. A., Stijger, C. M., Verhoeven, J. T. J., & Lesemann, D. E. (2000). First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103–103.CrossRefGoogle Scholar
  32. Verhoeven, J. T. J., Van der Vlugt, R. A. A., & Roenhorst, J. W. (2003). High similarity between isolates of Pepino mosaic virus suggests a common origin. European Journal of Plant Pathology, 109, 419–425.CrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • P. Gómez
    • 1
    • 2
    Email author
  • R. N. Sempere
    • 1
    • 3
  • M. A. Aranda
    • 1
  • S. F. Elena
    • 4
    • 5
  1. 1.Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC)Campus Universitario de EspinardoMurciaSpain
  2. 2.Centre for Ecology and Conservation, School of BiosciencesUniversity of ExeterPenrynUK
  3. 3.Bioprodin SL, Edificio CEEIMMurciaSpain
  4. 4.Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC-UPVValènciaSpain
  5. 5.The Santa Fe InstituteSanta FeUSA

Personalised recommendations