European Journal of Plant Pathology

, Volume 134, Issue 4, pp 661–670 | Cite as

An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy

  • Teruo Nonomura
  • Yoshinori MatsudaEmail author
  • Koji Kakutani
  • Junji Kimbara
  • Kazumi Osamura
  • Shin-ichi Kusakari
  • Hideyoshi Toyoda


Dual functions (insect repelling and capturing) of a single-charged dipolar electric field screen were evaluated to successfully exclude whiteflies from a window-open greenhouse. The screen consisted of three parts: 1) insulated conductor wires (ICWs) arrayed in parallel at 5 mm intervals, 2) two earthed stainless nets placed within 3 mm of both sides of the ICW layer, and 3) a voltage generator for the negatively charged ICWs. The screen formed two electric fields between the ICW-layer and the ICW-side surface of the earthed net and between the ICWs. At negative charging of 1.5–2.5 kV, all whiteflies reaching the outer surface of the screen net avoided entering the electric field and flew away from the screen. This avoidance was disturbed by 3 m s−1 wind, as the insects were compulsorily blown inside. However, almost all whiteflies (99.4 %) were captured with the ICW. These results indicate that the insect-capturing function is effective to complement a failure to repel. A greenhouse assay was conducted in the screen-attached and non-screened parts in which a greenhouse was divided with a partition. During the 3-month operation, the screen was durable and functional for excluding pests, and better air ventilation changed the climate conditions in the greenhouse. Thus, the present study demonstrated that our electric field screen can provide an airy condition for tomatoes in a window-open greenhouse and successfully exclude whiteflies using dual screen functions.


Physical control Hydroponic tomato Whitefly 

Supplementary material

Video supplement 1

(WMV 731 kb)

Video Supplement 2

(WMV 11523 kb)

Video Supplement 3

(WMV 6625 kb)


  1. Griffith, W. T. (2004). Electrostatic phenomena. In D. Bruflodt & B. S. Loehr (Eds.), The physics of everyday phenomena, a conceptual introduction to physics (pp. 232–252). New York: McGraw-Hill.Google Scholar
  2. Halliday, D., Resnick, R., & Walker, J. (2005). Electric fields. In S. Johnson & E. Ford (Eds.), Fundamentals of physics (pp. 580–604). New York: Wiley.Google Scholar
  3. Horowitz, A. R., Kontsedalov, S., & Ishaaya, I. (2004). Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabacci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 97, 2051–2056.PubMedCrossRefGoogle Scholar
  4. Jonassen, N. (2002). Abatement of static electricity. In Electrostatics (pp. 101–120). Massachusetts: Kluwer Academic Publishers.Google Scholar
  5. Kakutani, K., Matsuda, Y., Haneda, K., Nonomura, T., Kimbara, J., Osamura, K., et al. (2012a). Insects are electrified in an electric field by deprivation of their negative charge. Annals of Applied Biology, (in press).Google Scholar
  6. Kakutani, K., Matsuda, Y., Haneda, K., Sekoguchi, D., Nonomura, T., Kimbara, J., et al. (2012b). An electric field screen prevents captured insects from escaping by depriving bioelectricity generated through insect movements. Journal of Electrostatics, (in press).Google Scholar
  7. Matsuda, Y., Ikeda, H., Moriura, N., Tanaka, N., Shimizu, K., Oichi, W., Nonomura, T., Kakutani, K., Kusakari, S., Higashi, K., & Toyoda, H. (2006). A new spore precipitator with polarized dielectric insulators for physical control of tomato powdery mildew. Phytopathology, 96, 967–974.PubMedCrossRefGoogle Scholar
  8. Matsuda, Y., Nonomura, T., Kakutani, K., Takikawa, Y., Kimbara, J., Kasaishi, Y., Osamura, K., Kusakari, S., & Toyoda, H. (2011). A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies. Crop Protection, 30, 155–162.CrossRefGoogle Scholar
  9. Moore, A. D. (1997). Electric fields. In Electrostatics (pp. 51–64). Carfornia: Laplacian Press.Google Scholar
  10. Moriura, N., Matsuda, Y., Oichi, W., Nakashima, S., Hirai, T., Nonomura, T., et al. (2006a). An apparatus for collecting total conidia of Blumeria graminis f. sp. hordei from leaf colonies using electrostatic attraction. Plant Pathology, 55, 367–374.CrossRefGoogle Scholar
  11. Moriura, N., Matsuda, Y., Oichi, W., Nakashima, S., Hirai, T., Sameshima, T., et al. (2006b). Consecutive monitoring of lifelong production of conidia by individual conidiophores of Blumeria graminis f. sp. hordei on barley leaves by digital microscopic techniques with electrostatic micromanipulation. Mycological Research, 110, 18–27.PubMedCrossRefGoogle Scholar
  12. Nauen, R., & Denholm, I. (2005). Resistance of insect pests to neonicotinoid insecticides: current status and future respects. Advances of Insects Biochemistry and Physiology, 58, 200–215.CrossRefGoogle Scholar
  13. Newland, P. L., Hunt, E., Sharkh, S. M., Hama, N., Takahata, M., & Jackson, C. W. (2008). Static electric field detection and behavioural avoidance in cockroaches. Journal of Experimental Biology, 211, 3682–3690.PubMedCrossRefGoogle Scholar
  14. Nonomura, T., Matsuda, Y., Bingo, M., Onishi, M., Matsuda, K., Harada, S., & Toyoda, H. (2001). Algicidal effect of 3-(3-indolyl)butanoic acid, a control agent of the bacterial wilt pathogen, Ralstonia solanacearum. Crop Protection, 20, 935–939.CrossRefGoogle Scholar
  15. Nonomura, T., Matsuda, Y., Xu, L., Kakutani, K., Takikawa, Y., & Toyoda, H. (2009). Collection of highly germinative pseudochain conidia of Oidium neolycopersici from conidiophores by electrostatic attraction. Mycological Research, 113, 364–372.PubMedCrossRefGoogle Scholar
  16. Palumbo, J. C., Horowitz, A. R., & Prabhaker, N. (2001). Insecticidal control and resistance management for Bemisia tabaci. Crop Protection, 20, 739–765.CrossRefGoogle Scholar
  17. Prabhaker, N., Coudriet, D. L., & Meyerdirk, D. E. (1985). Insecticide resistance in the sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodiae). Journal of Economic Entomology, 78, 748–752.Google Scholar
  18. Sharaf, N. (1986). Chemical control of Bemisia tabaci. Agriculture, Ecosystems & Environment, 17, 111–127.CrossRefGoogle Scholar
  19. Shimizu, K., Matsuda, Y., Nonomura, T., Ikeda, H., Tamura, N., Kusakari, S., et al. (2007). Dual protection of hydroponic tomatoes from rhizosphere pathogens Ralstonia solanacearum and Fusarium oxysporum f. sp. radicis-lycopersici and airborne conidia of Oidium neolycopersici with an ozone-generative electrostatic spore precipitator. Plant Pathology, 56, 987–997.CrossRefGoogle Scholar
  20. Tanaka, N., Matsuda, Y., Kato, E., Kokabe, K., Furukawa, T., Nonomura, T., Honda, K., Kusakari, S., Imura, T., Kimbara, J., & Toyoda, H. (2008). An electric dipolar screen with oppositely polarized insulators for excluding whiteflies from greenhouses. Crop Protection, 27, 215–221.CrossRefGoogle Scholar
  21. Weintraub, P. G., & Berlinger, M. J. (2004). Physical control in greenhouses and field crops. In A. R. Horowitz & I. Ishaaya (Eds.), Insect pest management (pp. 301–318). Berlin: Springer.Google Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Teruo Nonomura
    • 1
  • Yoshinori Matsuda
    • 1
    Email author
  • Koji Kakutani
    • 2
  • Junji Kimbara
    • 3
  • Kazumi Osamura
    • 4
  • Shin-ichi Kusakari
    • 5
  • Hideyoshi Toyoda
    • 1
  1. 1.Laboratory of Phytoprotection Science and Technology, Faculty of AgricultureKinki UniversityNaraJapan
  2. 2.Pharmaceutical Research and Technology InstituteKinki UniversityOsakaJapan
  3. 3.Research Institute, Kagome Co., Ltd.TochigiJapan
  4. 4.Technical development unit, Panasonic Environmental Systems & Engineering Co., Ltd.OsakaJapan
  5. 5.Agricultural, Food and Environmental Sciences Research Center of Osaka PrefectureOsakaJapan

Personalised recommendations