European Journal of Plant Pathology

, Volume 133, Issue 1, pp 315–331 | Cite as

Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe

  • Jon S. West
  • James A. Townsend
  • Mark Stevens
  • Bruce D. L. Fitt


This review describes environmental factors that influence severity of crop disease epidemics, especially in the UK and north-west Europe, in order to assess the effects of climate change on crop growth and yield and severity of disease epidemics. While work on some diseases, such as phoma stem canker of oilseed rape and fusarium ear blight of wheat, that combine crop growth, disease development and climate change models is described in detail, climate-change projections and predictions of the resulting biotic responses to them are complex to predict and detailed models linking climate, crop growth and disease development are not available for many crop-pathogen systems. This review uses a novel approach of comparing pathogen biology according to ‘ecotype’ (a categorization based on aspects such as epidemic type, dissemination method and infection biology), guided by detailed disease progress models where available to identify potential future research priorities for disease control. Consequences of projected climate change are assessed for factors driving elements of disease cycles of fungal pathogens (nine important pathogens are assessed in detail), viruses, bacteria and phytoplasmas. Other diseases classified according to ‘ecotypes’ were reviewed and likely changes in their severity used to guide comparable diseases about which less information is available. Both direct and indirect effects of climate change are discussed, with an emphasis on examples from the UK, and considered in the context of other factors that influence diseases and particularly emergence of new diseases, such as changes to farm practices and introductions of exotic material and effects of other environment changes such as elevated CO2. Good crop disease control will contribute to climate change mitigation by decreasing greenhouse gas emissions from agriculture while sustaining production. Strategies for adaptation to climate change are needed to maintain disease control and crop yields in north-west Europe.


Climate change adaptation CO2 emissions Food insecurity Plant pathogens Epidemics Invasive species 



The authors are grateful for the funding and information provided by HGCA and the UK Department for Environment, Food and Rural Affairs, for the Sustainable Arable LINK project CLIMDIS (LK09111) with contributions from Simon G. Edwards; Judith A. Turner; David Ellerton; Andrew Flind; John King; Julian Hasler; C. Peter Werner; Chris Tapsell; Sarah Holdgate; Richard Summers; Bill Angus, and John Edmonds. Rothamsted Research is an institute of the UK Biotechnology and Biological Sciences Research Council (Bioenergy and Climate Change ISPG). We thank colleagues and collaborators, including Neal Evans, Michael Butterworth, James Madgwick and Mikhail Semenov, who have contributed to the work reviewed in this paper.


  1. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544.CrossRefGoogle Scholar
  2. Angus, W. J., Fenwick, P. M. (2008). Using genetic resistance to combat pest and disease threats R&D Conference ‘Arable Cropping in a Changing Climate’, 23–24 January 2008, Belton Woods, Lincolnshire, P21–27.Google Scholar
  3. Anonymous (2006). Foresight. Infectious diseases: Preparing for the future. London: Office of Science & Innovation.Google Scholar
  4. Anonymous (2007) IPCC fourth assessment report: Climate change 2007
  5. Bancal, M.-O., Gate, P. (2011). Advantages and vulnerabilities of agricultural crops faced with climate change. In N. Brisson, F. Levrault (Eds.) Climate change, agriculture and forests in France: simulations of the impacts on the main species: The Green Book of the CLIMATOR project 2007–2010 part C (The Crops) (p 336). ADEME.Google Scholar
  6. Barnes, A. P., Wreford, A., Butterworth, M. H., Semenov, M. A., Moran, D., Evans, N., & Fitt, B. D. L. (2010). Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. Journal of Agricultural Science, 148, 683–694.CrossRefGoogle Scholar
  7. Beddington, J. (2010). Food security: contributions from science to a new and greener revolution. Philosophical Transactions of the Royal Society B, 365, 61–71.CrossRefGoogle Scholar
  8. Berry, P. M., Kindred, D. R., & Paveley, N. D. (2008). Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production. Plant Pathology, 57, 1000–1008.CrossRefGoogle Scholar
  9. Bertaccini, A., Vorácková, Z., Vibio, M., Fránová, J., Navrátil, M., Špak, J., & Nebesárová, J. (1998). Comparison of phytoplasmas infecting winter oilseed rape in the Czech Republic with Italian Brassica phytoplasmas and their relationship to the aster yellows group. Plant Pathology, 47, 317–324.CrossRefGoogle Scholar
  10. Bettarini, I., Vaccari, F. P., & Miglietta, F. (1998). Elevated CO2 concentrations and stomatal density—observations from 17 plant species growing in a CO2 spring in central Italy. Global Change Biology, 4, 17–22.CrossRefGoogle Scholar
  11. Boonekamp, P. (2011). Plant diseases ignored in climate change debate. Public Service Review. European Science and Technology 10, (in press).Google Scholar
  12. Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoch, D., Zimmer, D., Sierra, J., Betuzzi, P., Burger, P., Bussière, F., Cabidoche, Y. M., Cellier, P., Debaeke, P., Gaudillère, J. P., Hénault, C., Maraux, F., Seguin, B., & Sinoquet, H. (2003). An overview of the crop model STICS. European Journal of Agronomy, 18, 309–332.CrossRefGoogle Scholar
  13. Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.PubMedCrossRefGoogle Scholar
  14. Busby, J. R. (1991). BIOCLIM—a bioclimate analysis and prediction system. Plant Protection Quarterly, 6, 8–9.Google Scholar
  15. Butterworth, M. H., Semenov, M. A., Barnes, A., Moran, D., West, J. S., & Fitt, B. D. L. (2010). North-south divide; contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society, Interface, 7, 123–130.PubMedCrossRefGoogle Scholar
  16. Carlton, R. R., West, J. S., Smith, P., Fitt, B. D. L. (2012). A comparison of GHG emissions from UK field crop production under selected arable systems with reference to disease control. European Journal of Plant Pathology, (this issue).Google Scholar
  17. Chakraborty, S., & Datta, S. (2003). How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytologist, 159, 733–742.CrossRefGoogle Scholar
  18. Chakraborty, S., Murray, G. M., Magarey, P. A., Yonow, T., O’Brien, R., Croft, B. J., Barbetti, M. J., Sivasithamparam, K., Old, K. M., Dudzinski, M. J., Sutherst, R. W., Penrose, L. J., Archer, C., & Emmett, R. W. (1998). Potential impact of climate change on plant diseases of economic signi®cance to Australia. Australasian Plant Pathology, 27, 15–35.CrossRefGoogle Scholar
  19. Clarke, J., Wynn, S., Twining, S., Berry, P., Cook, S., Ellis, S., Gladders, P. (2008). HGCA research review No. 70 pesticide availability for cereals and oilseeds following revision of Directive 91/414/EEC; effects of losses and new research priorities;
  20. Coakley, S. M., Scherm, H., & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology, 37, 399–426.PubMedCrossRefGoogle Scholar
  21. Cools, H. J., & Fraaije, B. A. (2008). Are azole fungicides losing ground against Septoria wheat disease? Resistance mechanisms in Mycosphaerella graminicola. Pest Management Science, 64, 681–684.PubMedCrossRefGoogle Scholar
  22. Davis, M. B., Shaw, R. G., & Etterson, J. R. (2005). Evolutionary responses to changing climate. Ecology, 86, 1704–1714.CrossRefGoogle Scholar
  23. Eastburn, D. M., McElrone, A. J., & Bilgin, D. D. (2011). Influence of atmospheric and climatic change on host-pathogen interactions. Plant Pathology, 60, 54–69.CrossRefGoogle Scholar
  24. Evans, N., Baierl, A., Semenov, M. A., Gladders, P., & Fitt, B. D. L. (2008). Range and severity of a plant disease increased by global warming. Journal of the Royal Society, Interface, 5, 525–531.PubMedCrossRefGoogle Scholar
  25. Evans, N., Butterworth, M. H., Baierl, A., Semenov, M. A., West, J. S., Barnes, A., Moran, D., & Fitt, B. D. L. (2010). The impact of climate change on disease constraints on production of oilseed rape. Food Security, 2, 143–156.CrossRefGoogle Scholar
  26. Fernandes, F. R., de Albuquerque, L. C., Giordano, L. D. B., Boiteux, L. S., de Avila, A. C., & Inoue-Nagata, A. K. (2008). Diversity and prevalence of Brazilian bipartite begomovirus species associated to tomatoes. Virus Genes, 36, 251–258.PubMedCrossRefGoogle Scholar
  27. Fitt, B. D. L., Fraaije, B. A., Chandramohan, P., & Shaw, M. W. (2011). Impacts of changing air composition on severity of arable crop disease epidemics. Plant Pathology, 60, 44–53.CrossRefGoogle Scholar
  28. Flood, J. (2010). The importance of plant health to food security. Food Security, 2, 215–231.CrossRefGoogle Scholar
  29. Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509.PubMedCrossRefGoogle Scholar
  30. Gladders, P., Paveley, N. D., Barrie, I. A., Hardwick, N. V., Hims, M. J., Langton, S., & Taylor, M. C. (2001). Agronomic and meteorological factors affecting the severity of leaf blotch caused by Mycosphaerella graminicola in commercial wheat crops in England. Annals of Applied Biology, 138, 301–311.CrossRefGoogle Scholar
  31. Gouache, D., Roche, R., Pieri P., Bancal, M.-O. (2011). Evolution of some pathosystems on wheat and vines, section B5. In N. Brisson, F. Levrault (Eds.) Climate change, agriculture and forests in France: simulations of the impacts on the main species: The Green Book of the CLIMATOR project 2007–2010 part C (The Crops) (p 336). ADEME.Google Scholar
  32. Goudriaan, J., & Zadoks, J. C. (1995). Global climate change: modelling the potential responses of agro-ecosystems with special reference to crop protection. Environmental Pollution, 87, 215–224.PubMedCrossRefGoogle Scholar
  33. Gregory, P. J. (2008). Mitigating climate change: energy, carbon and nitrogen on the farm R&D Conference ‘Arable Cropping in a Changing Climate’, 23–24 January 2008, Belton Woods, Lincolnshire, P12–20.Google Scholar
  34. Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838.PubMedCrossRefGoogle Scholar
  35. Harrington, R., Stork, N. E. (1995). Insects in a changing environment: 17th Symposium of the Royal Entomological Society, 7–10 September 1993 at Rothamsted Experimental Station, Harpenden. pp 535.Google Scholar
  36. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296, 2158–2162.PubMedCrossRefGoogle Scholar
  37. Hughes, D. J., West, J. S., Atkins, S. D., Gladders, P., Jeger, M. J., & Fitt, B. D. L. (2011). Effects of disease control by fungicides on greenhouse gas emissions by UK arable crop production. Pest Management Science. doi:10.1002/ps.2151.
  38. Jamieson, P. D., & Semenov, M. A. (2000). Modelling nitrogen uptake and redistribution in wheat. Field Crops Research, 68, 21–29.CrossRefGoogle Scholar
  39. Jamieson, P. D., Semenov, M. A., Brooking, I. R., & Francis, G. S. (1998). Sirius: a mechanistic model of wheat response to environmental variation. European Journal of Agronomy, 8, 161–179.CrossRefGoogle Scholar
  40. Kauserud, H., Heegaard, E., Semenov, M. A., Boddy, L., Halvorsen, R., Stige, L. C., Sparks, T. H., Gange, A. C., & Stenseth, N. C. (2010). Climate change and spring-fruiting fungi. Proceedings of the Royal Society Biological Sciences., 277, 1169–1177.PubMedCrossRefGoogle Scholar
  41. Kopf, S., Ha-Duong, M., & Hallegatte, S. (2008). Using maps of city analogues to display and interpret climate change scenarios and their uncertainty. Natural Hazards Earth System Science, 8, 905–918.CrossRefGoogle Scholar
  42. Lovell, D. J., Hunter, T., Powers, S. J., Parker, S. R., & Van den Bosch, F. (2004). Effect of temperature on latent period of septoria leaf blotch on winter wheat under outdoor conditions. Plant Pathology, 53, 170–181.CrossRefGoogle Scholar
  43. Luck, J., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K., Chakraborty, S. (2011). Climate change and diseases of food crops. Plant Pathology 60, 113–121.Google Scholar
  44. Madgwick, J. W., West, J. S., White, R. P., Semenov, M. A., Townsend, J. A., Turner, J. A., & Fitt, B. D. L. (2011). Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. European Journal of Plant Pathology, 130, 117–131.CrossRefGoogle Scholar
  45. Magarey, R. D., Fowler, G. A., Borchert, D. M., Sutton, T. B., Colunga-Garcia, M., & Simpson, J. A. (2007). NAPPFAST: an internet system for the weather-based mapping of plant pathogens. Plant Disease, 91, 336–345.CrossRefGoogle Scholar
  46. Mahmuti, M., West, J. S., Watts, J., Gladders, P., & Fitt, B. D. L. (2009). Controlling crop disease contributes to both food security and climate change mitigation. International Journal of Agricultural Sustainability, 7, 189–202.CrossRefGoogle Scholar
  47. Maliogka, V. I., Tsialtas, J. T., Papantoniou, A., Efthimiou, K., & Katis, N. I. (2009). First report of a phytoplasma associated with an oilseed rape disease in Greece. Plant Pathology, 58, 792.CrossRefGoogle Scholar
  48. Manning, W. J., & von Tiedemann, A. (1995). Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environmental Pollution, 88, 219–245.PubMedCrossRefGoogle Scholar
  49. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.PubMedCrossRefGoogle Scholar
  50. Milus, E. A., Kristensen, K., & Hovmøller, M. S. (2009). Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology, 99, 89–94.PubMedCrossRefGoogle Scholar
  51. Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.CrossRefGoogle Scholar
  52. Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small-grain cereals—a review. Plant Pathology, 44, 207–238.CrossRefGoogle Scholar
  53. Paveley, N., Kindred, D., Berry, P., Spink, J. (2008). Can disease management reduce greenhouse gas emissions? R&D Conference ‘Arable Cropping in a Changing Climate’, 23–24 January 2008, Belton Woods, Lincolnshire, P38–6.Google Scholar
  54. Perryman, S. A. M., Gladders, P., & Fitt, B. D. L. (2009). Occurrence and effects of pasmo (Mycosphaerella linicola) on linseed in the UK. Annals of Applied Biology, 154, 19–32.CrossRefGoogle Scholar
  55. Pietravalle, S., Shaw, M. W., Parker, S. R., & van den Bosch, F. (2003). Modeling of relationships between weather and Septoria tritici epidemics on winter wheat: a critical approach. Phytopathology, 93, 1329–1339.PubMedCrossRefGoogle Scholar
  56. Roche, R., Bancal, M. O., Gagnaire, N., Huber, L. (2008). Potential impact of climate change on brown wheat rust: a preliminary study based on biophysical modelling of infection events and plant-pathogen interactions. Aspects of Applied Biology 88: Effects of Climate Change on Plants: Implications for Agriculture, pp 135–142.Google Scholar
  57. Sansford, C. E., Baker, R. H. A., Brennan, J. P., Ewert, F., Gioli, B., Inman, A., Kinsella, A., Magnus, H. A., Miglietta, F., Murray, G. M., Porta-Puglia, A., Porter, J. R., Rafoss, T., Riccioni, L., & Thorne, F. (2008). The new Pest Risk Analysis for Tilletia indica, the cause of Karnal bunt of wheat, continues to support the quarantine status of the pathogen in Europe. Plant Pathology, 57, 603–611.CrossRefGoogle Scholar
  58. Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America, 104, 19703–19708.PubMedCrossRefGoogle Scholar
  59. Semenov, M. A. (2009). Impacts of climate change on wheat in England and Wales. Journal of the Royal Society, Interface, 6, 343–350.PubMedGoogle Scholar
  60. Semenov, M. A., & Stratonovitch, P. (2010). The use of multi-model ensembles from global climate models for impact assessments of climate change. Climate Research, 41, 1–14.CrossRefGoogle Scholar
  61. Shaw, M. W., & Osborne, T. M. (2011). The geographic distribution of plant pathogens in response to climate change. Plant Pathology, 60, 31–43.CrossRefGoogle Scholar
  62. Shaw, M. W., Bearchell, S. J., Fitt, B. D. L., & Fraaije, B. A. (2008). Long-term relationships between environment and abundance in wheat of Phaeosphaeria nodorum and Mycosphaerella graminicola. New Phytologist, 177, 229–238.PubMedGoogle Scholar
  63. Smith, I. M., Dunez, J., Lelliott, R. A., Phillips, D. H., & Archer, S. A. (1988). European handbook of plant diseases. Oxford: Blackwell.CrossRefGoogle Scholar
  64. Stern, N. (2007). The economics of climate change: The stern review. UK: Cambridge University Press.Google Scholar
  65. Stukenbrock, E. H., & McDonald, B. A. (2008). The origins of plant pathogens in agro-ecosystems. Annual Review of Phytopathology, 46, 75–100.PubMedCrossRefGoogle Scholar
  66. Sutherst, R. W., & Maywald, G. F. (1985). A computerised system for matching climates in ecology. Agriculture, Ecosystems and Environment, 13, 281–299.CrossRefGoogle Scholar
  67. te Beest, D. E., Paveley, N. D., Shaw, M. W., & van den Bosch, F. (2008). Disease-weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology, 98, 609–617.CrossRefGoogle Scholar
  68. te Beest, D. E., Shaw, M. W., Pietravalle, S., & van den Bosch, F. (2009). A predictive model for early-warning of Septoria leaf blotch on winter wheat. European Journal of Plant Pathology, 124, 413–425.CrossRefGoogle Scholar
  69. Turner, J. A. (2008). Tracking changes in the importance and distribution of diseases under climate change. R&D Conference ‘Arable Cropping in a Changing Climate’, 23–24 January 2008, Belton Woods, Lincolnshire, P68–77.Google Scholar
  70. van den Berg, F., & van den Bosch, F. (2007). The elasticity of the epidemic growth rate to observed weather patterns with an application to yellow rust. Phytopathology, 97, 1512–1518.PubMedCrossRefGoogle Scholar
  71. Vereijssen, J., Schneider, J. H. M., & Jeger, M. J. (2007). Supervised control of Cercospora leaf spot in sugar beet. Crop Protection, 26, 19–28.CrossRefGoogle Scholar
  72. Walker, P. A., & Cocks, K. D. (1991). HABITAT: a procedure for modelling a disjoint environmental envelope for a plant or animal species. Global Ecology and Biogeography Letters, 1, 108–118.CrossRefGoogle Scholar
  73. West, J. S., Holdgate, S., Townsend, J. A., Edwards, S. G., Jennings, P., Fitt, B. D. L. (2011). Impact of climate change on severity of fusarium ear blight on wheat in the UK. (In press) doi:10.1016/j.funeco.2011.03.003.
  74. Willis, J. C., Bohan, D. A., Choi, Y. H., Conrad, K. F., & Semenov, M. A. (2006). Use of an individual-based model to forecast the effect of climate change on the dynamics, abundance and geographical range of the pest slug Deroceras reticulatum in the UK. Global Change Biology, 12, 1643–1657.CrossRefGoogle Scholar
  75. Zhu, Y., Qian, W. Q., Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens, Pages: e1000844.Google Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Jon S. West
    • 1
  • James A. Townsend
    • 1
  • Mark Stevens
    • 1
    • 2
  • Bruce D. L. Fitt
    • 1
    • 3
  1. 1.Rothamsted ResearchEnglandUK
  2. 2.Broom’s Barn Research CentreBury St. EdmundsUK
  3. 3.School of Life Sciences, University of HertfordshireHatfieldUK

Personalised recommendations