Advertisement

European Journal of Plant Pathology

, Volume 133, Issue 1, pp 101–116 | Cite as

Impacts of exotic forest pathogens on Mediterranean ecosystems: four case studies

  • Matteo Garbelotto
  • Marco Pautasso
Article

Abstract

Mediterranean ecosystems are hotspots of biodiversity. Because of a coincidence of high species richness and human presence, Mediterranean biodiversity is particularly threatened by processes such as habitat degradation, fragmentation and loss, pollution, climate change and introduction of invasive species. Invasive tree pathogens are among the problematic exotic species of California, Chile, the Mediterranean, South Africa and Australia. In this review, we provide an update on a selection of non-native tree pathogens currently posing a threat in Mediterranean ecosystems. The impact of exotic forest pathogens range from large-scale tree and shrub mortality in native ecosystems (Phytophthora ramorum on the West Coast of the USA) to disruption of plantations of exotic (e.g., Seiridium cardinale on planted Monterey cypress in California, Fusarium circinatum on Monterey pine worldwide) and native trees (introduction of the North American Heterobasidion irregulare in stone pine woodland in Italy). Genetic analyses are instrumental in improving our understanding and management of these outbreaks. There is a need for more empirical data on how novel pathosystems are likely to develop under novel climates, as well as interdisciplinary collaborations among forest pathologists, theoretical modellers and climatologists. The magnitude of the observed effects of some exotic tree diseases makes it important to try and minimize the risk of the inadvertent movement of plant pathogens when planning assisted migration activities to enable plant species to cope with rapid climate change.

Keywords

Biodiversity Forest health Geographical genetics Global change Host susceptibility Landscape epidemiology Multiple trade-offs Sudden Oak Death Transmission rates Tree fungal pathogens 

Notes

Acknowledgements

Many thanks to C. Brasier, M.I. Clara, K. Dehnen-Schmutz, S. Frankel, P. Gonthier, E. Hansen, J. Hayden, O. Holdenrieder, M. Jeger, V. Kertesz, C. Manceau, S. Mascheretti, M. Moslonka-Lefebvre, G. Nicolotti, J. Parke, S. Prospero, T. Rafoss, D. Rizzo, S. Tramontini, A. Vannini, A. Vettraino, S. Vos, X. Xu, J. Webber for insights and discussions, and to T. Matoni and anonymous reviewers for helpful comments on a previous draft. This review is based on a presentation by M. Garbelotto at the Climate Change and Plant Disease Management Conference, University of Evora, Portugal, 10–12 November 2010.

References

  1. Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale, V. C., Smith, A. M. S., & Huxman, T. E. (2011). Ecohydrological consequences of drought- and infestation- triggered tree die-off: insights and hypotheses. Ecohydrology, in press doi: 10.1002/eco.233
  2. Allen, C. D., Macalady, A. K., Chenchouni, H., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684. doi: 10.1016/j.foreco.2009.09.001.CrossRefGoogle Scholar
  3. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544. doi: 10.1016/j.tree.2004.07.021.CrossRefGoogle Scholar
  4. Andrivon, D. (1996). The origin of Phytophthora infestans populations present in Europe in the 1840s: A critical review of historical and scientific evidence. Plant Pathology, 45, 1027–1035. doi: 10.1046/j.1365-3059.1996.d01-196.x.CrossRefGoogle Scholar
  5. Araújo, M. B. (2003). The coincidence of people and biodiversity in Europe. Global Ecology and Biogeography, 12, 5–12. doi: 10.1046/j.1466-822X.2003.00314.x.CrossRefGoogle Scholar
  6. Arianoutsou, M., Bazos, I., Delipetrou, P., & Kokkoris, T. (2010). The alien flora of Greece: taxonomy, life traits and habitat preferences. Biological Invasions, 12, 3525–3549. doi: 10.1007/s10530-010-9749-0.CrossRefGoogle Scholar
  7. Asiegbu, F. O., Adomas, A., & Stenlid, J. (2005). Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Molecular Plant Pathology, 6, 395–409.PubMedCrossRefGoogle Scholar
  8. Aukema, J. E., McCullough, D. G., Von Holle, B., Liebhold, A. M., Britton, K., & Frankel, S. J. (2010). Historical accumulation of nonindigenous forest pests in the continental United States. BioScience, 60, 886–897. doi: 10.1525/bio.2010.60.11.5.CrossRefGoogle Scholar
  9. Battisti, A., Roques, A., Colombari, F., Frigimelica, G., & Guido, M. (1999). Efficient transmission of an introduced pathogen via an ancient insect-fungus association. Naturwissenschaften, 86, 479–483. doi: 10.1007/s001140050658.PubMedCrossRefGoogle Scholar
  10. Battles, J. J., Robards, T., Das, A., Waring, K., Gilless, J. K., Biging, G., et al. (2008). Climate change impacts on forest growth and tree mortality: A data-driven modeling study in the mixed-conifer forest of the Sierra Nevada, California. Climatic Change, 87, 193–231. doi: 10.1007/s10584-007-9358-9.CrossRefGoogle Scholar
  11. Beakes, G. W., Glockling, S. L., & Sekimoto, S. (2011). The evolutionary phylogeny of the oomycete “fungi.” Protoplasma, in press doi: 10.1007/s00709-011-0269-2
  12. Bilodeau, G., Pelletier, G., Pelletier, F., Lévesque, C., & Hamelin, R. C. (2009). Multiplex real-time polymerase chain reaction (PCR) for detection of Phytophthora ramorum, the causal agent of sudden oak death. Canadian Journal of Plant Pathology, 31, 195–210.CrossRefGoogle Scholar
  13. Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., et al. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26, 333–339. doi: 10.1016/j.tree.2011.03.023.CrossRefGoogle Scholar
  14. Blondel, J., & Aronson, J. (1995). Biodiversity and ecosystem function in the Mediterranean Basin. Human and non-human determinants. In G. W. Davis & D. M. Richardson (Eds.), Mediterranean-type ecosystems. The function of biodiversity (pp. 43–119). Berlin: Springer.CrossRefGoogle Scholar
  15. Bonello, P., Gordon, T. R., Herms, D. A., Wood, D. L., & Erbilgin, N. (2006). Nature and ecological implications of pathogen-induced systemic resistance in conifers: A novel hypothesis. Physiological and Molecular Plant Pathology, 68, 95–104. doi: 10.1016/j.pmpp.2006.12.002.CrossRefGoogle Scholar
  16. Botella, L., Tuomivirta, T. T., Kaitera, J., Carrasco Navarro, V., Diez, J. J., & Hantula, J. (2010). Spanish population of Gremmeniella abietina is genetically unique but related to type A in Europe. Fungal Biology, 114, 778–789. doi: 10.1016/j.funbio.2010.07.003.PubMedCrossRefGoogle Scholar
  17. Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57, 792–808. doi: 10.1111/j.1365-3059.2008.01886.x.CrossRefGoogle Scholar
  18. Brasier, C. M., & Hansen, E. M. (1992). Evolutionary biology of Phytophthora. Part II: Phylogeny, speciation, and population structure. Annual Review of Phytopathology, 30, 173–200. doi: 10.1146/annurev.py.30.090192.001133.CrossRefGoogle Scholar
  19. Brasier, C., & Webber, J. (2010). Sudden larch death. Nature, 466, 824–825. doi: 10.1038/466824a.PubMedCrossRefGoogle Scholar
  20. Brasier, C. M., Vettraino, A. M., Chang, T. T., & Vannini, A. (2010). Phytophthora lateralis discovered in an old growth Chamaecyparis forest in Taiwan. Plant Pathology, 59, 595–603. doi: 10.1111/j.1365-3059.2010.02278.x.CrossRefGoogle Scholar
  21. Burdon, J. J., & Chilvers, G. A. (1982). Host density as a factor in plant disease ecology. Annual Review of Phytopathology, 20, 143–166. doi: 10.1146/annurev.py.20.090182.001043.CrossRefGoogle Scholar
  22. Cahill, D. M., Rookes, J. E., Wilson, B. A., Gibson, L., & McDougall, K. L. (2008). Phytophthora cinnamomi and Australia’s biodiversity: Impacts, predictions and progress towards control. Australian Journal of Botany, 56, 279–310. doi: 10.1071/BT07159.CrossRefGoogle Scholar
  23. Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., & Peñuelas, J. (2011). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences USA, 108, 1474–1478. doi: 10.1073/pnas.1010070108.CrossRefGoogle Scholar
  24. Chadfield, V., & Pautasso, M. (2012). Phytophthora ramorum in England and Wales: which environmental variables predict county disease incidence? Forest Pathology, in press doi: 10.1111/j.1439-0329.2011.00735.x
  25. Cobb, R. C., Meentemeyer, R. K., & Rizzo, D. M. (2010). Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility. Ecology, 91, 327–333. doi: 10.1890/09-0680.1.PubMedCrossRefGoogle Scholar
  26. Correll, J. C., Gordon, T. R., McCain, A. H., Fox, J. W., Koehler, C. S., Wood, D. L., et al. (1991). Pitch canker disease in California: Pathogenicity, distribution and canker development on Monterey pine (Pinus radiata). Plant Disease, 75, 676–682. doi: 10.1094/PD-75-0676.CrossRefGoogle Scholar
  27. Costa, A., Pereira, H., & Madeira, M. (2010). Analysis of spatial patterns of oak decline in cork oak woodlands in Mediterranean conditions. Annals of Forest Science, 67, 204. doi: 10.1051/forest/2009097.CrossRefGoogle Scholar
  28. Cowling, R. M., Rundel, P. W., Lamont, B. B., Arroyo, M. K., & Arianoutsou, M. (1996). Plant diversity in Mediterranean-climate regions. Trends in Ecology & Evolution, 11, 362–366. doi: 10.1016/0169-5347(96)10044-6.CrossRefGoogle Scholar
  29. Cox, R. L., & Underwood, E. C. (2011). The importance of conserving biodiversity outside of protected areas in Mediterranean ecosystems. PLoS One, 6, e14508. doi: 10.1371/journal.pone.0014508.PubMedCrossRefGoogle Scholar
  30. D’Amico, L., Motta, E., Annesi, T., Scirè, M., Luchi, N., Hantula, J., et al. (2007). The North American P group of Heterobasidion annosum s.l. is widely distributed in Pinus pinea forests of the western coast of central Italy. Forest Pathology, 37, 303–320. doi: 10.1111/j.1439-0329.2007.00501.x.CrossRefGoogle Scholar
  31. Dalgleish, H. J., & Swihart, R. K. (2011). American chestnut past and future: Implications of restoration for resource pulses and consumer populations of Eastern U.S. Forests. Restoration Ecology, in press doi: 10.1111/j.1526-100X.2011.00795.x
  32. Davis, F. W., Borchert, M., Meentemeyer, R. K., Flint, A., & Rizzo, D. M. (2010). Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region, California. Forest Ecology and Management, 259, 2342–2354. doi: 10.1016/j.foreco.2010.03.007.CrossRefGoogle Scholar
  33. Dehnen-Schmutz, K., Holdenrieder, O., Jeger, M. J., & Pautasso, M. (2010). Structural change in the international horticultural industry: Some implications for plant health. Scientia Horticulturae, 125, 1–15. doi: 10.1016/j.scienta.2010.02.017.CrossRefGoogle Scholar
  34. Della Rocca, G., Danti, R., & Garbelotto, M. (2011a). First report of Seiridium unicorne causing bark cankers on a Monterey cypress in California. Plant Disease, 95, 619. doi: 10.1094/PDIS-01-11-0052.CrossRefGoogle Scholar
  35. Della Rocca, G., Eyre, C., Danti, R., & Garbelotto, M. (2011b). Sequence and SSR analyses of the fungal pathogen Seiridium cardinale indicate California is the most likely source of the Cypress canker epidemic for the Mediterranean region. Phytopathology, 101, 1408–1417. doi: 10.1094/PHYTO-05-11-0144.PubMedCrossRefGoogle Scholar
  36. Denman, S., Kirk, S. A., Moralejo, E., & Webber, J. F. (2009). Phytophthora ramorum and P. kernoviae on naturally infected asymptomatic foliage. EPPO Bulletin, 39, 105–111. doi: 10.1111/j.1365-2338.2009.02243.x.CrossRefGoogle Scholar
  37. DiLeo, M. V., Bostock, R. M., & Rizzo, D. M. (2009). Phytophthora ramorum does not cause physiologically significant systemic injury to California bay laurel, its primary reservoir host. Phytopathology, 99, 1307–1311. doi: 10.1094/PHYTO-99-11-1307.PubMedCrossRefGoogle Scholar
  38. Dodd, R. S., Hüberli, D., Mayer, W., Harnik, T. Y., Afzal-Rafii, Z., & Garbelotto, M. (2008). Evidence for the role of synchronicity between host phenology and pathogen activity in the distribution of sudden oak death canker disease. New Phytologist, 165, 203–214. doi: 10.1111/j.1469-8137.2008.02450.x.CrossRefGoogle Scholar
  39. Donahoo, R., Blomquist, C. L., Thomas, S. L., Moulton, J. K., Cooke, D. E. L., & Lamour, K. H. (2006). Phytophthora foliorum sp. nov., a new species causing leaf blight of azalea. Mycological Research, 110, 1309–1322. doi: 10.1016/j.mycres.2006.07.017.PubMedCrossRefGoogle Scholar
  40. Dreaden, T., & Smith, J. (2010). Pitch canker disease of pines. FOR236, School of Forest Resources and Conservation, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Accessed August 2011 at http://edis.ifas.ufl.edu/fr298
  41. Durán, A., Gryzenhout, M., Drenth, A., Slippers, B., Ahumada, R., Wingfield, B. D., et al. (2010). AFLP analysis reveals a clonal population of Phytophthora pinifolia in Chile. Fungal Biology, 114, 746–752. doi: 10.1016/j.funbio.2010.06.008.PubMedCrossRefGoogle Scholar
  42. Dutech, C., Fabreguettes, O., Capdevielle, X., & Robin, C. (2010). Multiple introductions of divergent genetic lineages in an invasive fungal pathogen, Cryphonectria parasitica, in France. Heredity, 105, 220–228. doi: 10.1038/hdy.2009.164.PubMedCrossRefGoogle Scholar
  43. Dvorak, W. S., Potter, K. M., Hipkins, V. D., & Hodge, G. R. (2009). Genetic diversity and gene exchange in Pinus oocarpa, a mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum). International Journal of Plant Science, 170, 609–626. doi: 10.1086/597780.CrossRefGoogle Scholar
  44. EFSA Panel on Plant Health (PLH). (2011). Scientific opinion on the pest risk analysis on Phytophthora ramorum prepared by the FP6 project RAPRA. EFSA Journal, 9(2186). doi: 10.2903/j.efsa.2011.2186.
  45. Érsek, T., & Nagy, Z. A. (2008). Species hybrids in the genus Phytophthora with emphasis on the alder pathogen Phytophthora alni: a review. European Journal of Plant Pathology, 122, 31–39. doi: 10.1007/s10658-008-9296-z.CrossRefGoogle Scholar
  46. Érsek, T., & Ribeiro, O. K. (2010). An annotated list of new Phytophthora species described post 1996. Acta Phytopathologica et Entomologica Hungarica, 45, 251–266. doi: 10.1556/APhyt.45.2010.2.2.CrossRefGoogle Scholar
  47. Fabre, B., Piou, D., Desprez-Loustau, M.-L., & Marçais, B. (2011). Can the emergence of pine Diplodia shoot blight in France be explained by changes in pathogen pressure linked to climate change? Global Change Biology, 17, 3218–3227. doi: 10.1111/j.1365-2486.2011.02428.x.CrossRefGoogle Scholar
  48. Fischer, J., Zerger, A., Gibbons, P., Stott, J., & Law, B. S. (2010). Tree decline and the future of Australian farmland biodiversity. Proceedings of the National Academy of Sciences USA, 107, 19597–19602. doi: 10.1073/pnas.1008476107.CrossRefGoogle Scholar
  49. Ganley, R. J., Watt, M. S., Manning, L., & Iturritxa, E. (2009). A global climatic risk assessment of pitch canker disease. Canadian Journal of Forest Research, 39, 2246–2256. doi: 10.1139/X09-131.CrossRefGoogle Scholar
  50. Ganley, R. J., Watt, M. S., Kriticos, D. J., Hopkins, A. J. M., & Manning, L. J. (2011). Increased risk of pitch canker to Australasia under climate change. Australasian Plant Pathology, 40, 228–237. doi: 10.1007/s13313-011-0033-2.CrossRefGoogle Scholar
  51. Garbelotto, M. (2008). Molecular analysis to study invasions by forest pathogens: Examples from Mediterranean ecosystems. Phytopathologia Mediterranea, 47, 183–203.Google Scholar
  52. Garbelotto, M., Smith, T., & Schweigkofler, W. (2008). Variation of spore dispersal of Fusarium circinatum, the causal agent of pine pitch canker, over a 12-month period at two locations in Northern California. Phytopathology, 98, 137–143. doi: 10.1094/PHYTO-98-1-0137.PubMedCrossRefGoogle Scholar
  53. Garbelotto, M., Linzer, L., Nicolotti, G., & Gonthier, P. (2010). Comparing the influences of ecological and evolutionary factors on the successful invasion of a fungal forest pathogen. Biological Invasions, 12, 943–957. doi: 10.1007/s10530-009-9514-4.CrossRefGoogle Scholar
  54. Garrett, K. A., Nita, M., De Wolf, E. D., Gomez, L., & Sparks, A. H. (2009). Plant pathogens as indicators of climate change. In T. Letcher (Ed.), Climate change: Observed impacts on planet earth (pp. 425–437). Dodrecht: Elsevier.Google Scholar
  55. Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., & Goodess, C. M. (2009). Climatic changes and associated impacts in the Mediterranean resulting from a 2°C global warming. Global and Planetary Change, 68, 209–224. doi: 10.1016/j.gloplacha.2009.06.001.CrossRefGoogle Scholar
  56. Gil, L., Fuentes-Utrilla, P., Soto, A., Cervera, M. T., & Collada, C. (2004). English elm is a 2,000-year-old Roman clone. Nature, 431, 1053. doi: 10.1038/4311053a.PubMedCrossRefGoogle Scholar
  57. Giraud, T., Gladieux, P., & Gavrilets, S. (2010). Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology & Evolution, 25, 387–395. doi: 10.1016/j.tree.2010.03.006.CrossRefGoogle Scholar
  58. Gonthier, P., & Garbelotto, M. (2011). Amplified fragment length polymorphism and sequence analyses reveal massive gene introgression from the European fungal pathogen Heterobasidion annosum into its introduced congener H. irregulare. Molecular Ecology, 20, 2756–2770. doi: 10.1111/j.1365-294X.2011.05121.x.PubMedCrossRefGoogle Scholar
  59. Gonthier, P., Warner, R., Nicolotti, G., Mazzaglia, A., & Garbelotto, M. M. (2004). Pathogen introduction as a collateral effect of military activity. Mycological Research, 108, 468–470. doi: 10.1017/S0953756204240369.PubMedCrossRefGoogle Scholar
  60. Gonthier, P., Nicolotti, G., Linzer, R., Guglielmo, F., & Garbelotto, M. (2007). Invasion of European pine stands by a North American forest pathogen and its hybridization with a native interfertile taxon. Molecular Ecology, 16, 1389–1400. doi: 10.1111/j.1365-294X.2007.03250.x.PubMedCrossRefGoogle Scholar
  61. Gordon, T. R. (1996). Pitch canker disease of pines. Phytopathology, 96, 657–659. doi: 10.1094/phyto-96/0657.CrossRefGoogle Scholar
  62. Gordon, T. R., Storer, A. J., & Wood, D. L. (2001). The pitch canker epidemic in California. Plant Disease, 85, 1128–1139. doi: 10.1094/PDIS.2001.85.11.1128.CrossRefGoogle Scholar
  63. Goss, E. M., Larsen, M., Vercauteren, A., Werres, S., Heungens, K., & Grünwald, N. J. (2011). Phytophthora ramorum in Canada: Evidence for migration within North America and from Europe. Phytopathology, 101, 166–171. doi: 10.1094/PHYTO-05-10-0133.PubMedCrossRefGoogle Scholar
  64. Graniti, A. (1986). Seiridium cardinale and other cypress cankers. EPPO Bulletin, 16, 479–486. doi: 10.1111/j.1365-2338.1986.tb00309.x.CrossRefGoogle Scholar
  65. Graniti, A. (1998). Cypress canker: A pandemic in progress. Annual Review of Phytopathology, 36, 91–114. doi: 10.1146/annurev.phyto.36.1.91.PubMedCrossRefGoogle Scholar
  66. Gray, L., Gylander, T., Mbogga, M., Chen, P. Y., & Hamann, A. (2011). Assisted migration to address climate change: Recommendations for aspen reforestation in western Canada. Ecological Applications, 21, 1591–1603. doi: 10.1890/10-1054.1.PubMedCrossRefGoogle Scholar
  67. Greslebin, A. G., & Hansen, E. M. (2010). Pathogenicity of Phytophthora austrocedrae on Austrocedrus chilensis and its relation with mal del ciprés in Patagonia. Plant Pathology, 59, 604–612. doi: 10.1111/j.1365-3059.2010.02258.x.CrossRefGoogle Scholar
  68. Grünwald, N. J., & Goss, E. (2011). Evolution and population genetics of exotic and re-emerging pathogens: Novel tools and approaches. Annual Review of Phytopathology, 49, 249–267. doi: 10.1146/annurev-phyto-072910-095246.PubMedCrossRefGoogle Scholar
  69. Hansen, E. M. (2008). Alien forest pathogens: Phytophthora species are changing world forests. Boreal Environment Research, 13, 33–41.Google Scholar
  70. Harwood, T. D., Xu, X. M., Pautasso, M., Jeger, M. J., & Shaw, M. (2009). Epidemiological risk assessment using linked network and grid based modelling: Phytophthora ramorum and Phytophthora kernoviae in the UK. Ecological Modelling, 220, 3353–3361. doi: 10.1016/j.ecolmodel.2009.08.014.CrossRefGoogle Scholar
  71. Hayden, K. J., Rizzo, D., Tse, J., & Garbelotto, M. (2004). Detection and quantification of Phytophthora ramorum from California forests using a real-time polymerase chain reaction assay. Phytopathology, 94, 1075–1083. doi: 10.1094/PHYTO.2004.94.10.1075.PubMedCrossRefGoogle Scholar
  72. Hayden, K. J., Nettel, A., Dodd, R. S., & Garbelotto, M. (2011). Will all the trees fall? Variable resistance to an introduced forest disease in a highly susceptible host. Forest Ecology and Management, 261, 1781–1791. doi: 10.1016/j.foreco.2011.01.042.CrossRefGoogle Scholar
  73. Hicke, J. A., Allen, C. D., Desai, A. R., Dietze, M. C., Hall, R. J., Hogg, E. H., et al. (2012). Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, in press doi: 10.1111/j.1365-2486.2011.02543.x
  74. Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D. B., Parmesan, C., Possingham, H. P., et al. (2008). Assisted colonization and rapid climate change. Science, 321, 345–346. doi: 10.1126/science.1157897.PubMedCrossRefGoogle Scholar
  75. Holdenrieder, O., Pautasso, M., Weisberg, P. J., & Lonsdale, D. (2004). Tree diseases and landscape processes: The challenge of landscape pathology. Trends in Ecology & Evolution, 19, 446–452. doi: 10.1016/j.tree.2004.06.003.CrossRefGoogle Scholar
  76. Holderegger, R., Kamm, U., & Gugerli, F. (2006). Adaptive vs. neutral genetic diversity: Implications for landscape genetics. Landscape Ecology, 21, 797–807. doi: 10.1007/s10980-005-5245-9.CrossRefGoogle Scholar
  77. Hüberli, D., & Garbelotto, M. (2012). Phytophthora ramorum is a generalist plant pathogen with differences in virulence between isolates from infectious and dead-end hosts. Forest Pathology, in press doi: 10.1111/j.1439-0329.2011.00715.x
  78. Hüberli, D., Ireland, K., Smith, I., Dell, B., Ormsby, M., Rizzo, D., et al. (2009). Australasia is at high risk of a Phytophthora ramorum epidemic. In: Phytophthoras in Forests and Natural Ecosystems. Proceedings of the Fourth Meeting of IUFRO Working Party S07.02.09, PSW-GTR-221, pp. 184-187.Google Scholar
  79. Hüberli, D., Hayden, K. J., Calver, M., & Garbelotto, M. (2012). Intraspecific variation in host susceptibility and climatic factors mediate epidemics of sudden oak death in western US forests. Plant Pathology, in press. doi: 10.1111/j.1365-3059.2011.02535.x
  80. Hunter, M. L. (2007). Climate change and moving species: Furthering the debate on assisted colonization. Conservation Biology, 21, 1356–1358. doi: 10.1111/j.1523-1739.2007.00780.x.PubMedCrossRefGoogle Scholar
  81. Husson, C., Halkett, F., & Marçais, B. (2010). A statistical model to detect asymptomatic infectious individuals with an application in the Phytophthora alni-induced alder decline. Phytopathology, 100, 1262–1269. doi: 10.1094/PHYTO-05-10-0140.PubMedCrossRefGoogle Scholar
  82. Ireland, K. B., Hüberli, D., Dell, B., Smith, I. W., Rizzo, D. M., & Hardy, G. E. St. J. (2012). Potential susceptibility of Australian native plant species to branch dieback and bole canker diseases caused by Phytophthora ramorum. Plant Pathology, in press doi: 10.1111/j.1365-3059.2011.02513.x
  83. Iturritxa, E., Ganley, R. J., Wright, J., Heppe, E., Steenkamp, E. T., Gordon, T. R., et al. (2011). A genetically homogenous population of Fusarium circinatum causes pitch canker of Pinus radiata in the Basque Country, Spain. Fungal Biology, 115, 288–295. doi: 10.1016/j.funbio.2010.12.014.PubMedCrossRefGoogle Scholar
  84. Jeger, M. J., & Pautasso, M. (2008). Plant disease and global change – the importance of long-term data sets. New Phytologist, 177, 8–11. doi: 10.1111/j.1469-8137.2007.02312.x.PubMedCrossRefGoogle Scholar
  85. Johnstone, J. A., & Dawson, T. E. (2010). Climatic context and ecological implications of summer fog decline in the coast redwood region. Proceedings of the National Academy of Sciences USA, 107, 4533–4538. doi: 10.1073/pnas.0915062107.CrossRefGoogle Scholar
  86. Jules, E. S., Kauffman, M. J., Ritts, D. R., & Carrol, A. L. (2002). Spread of an invasive pathogen over a variable landscape: A non native root rot on Port Orford Cedar. Ecology, 83, 3167–3181. doi: 10.1890/0012-9658(2002)083[3167:SOAIPO]2.0.CO;2].CrossRefGoogle Scholar
  87. Jung, T., & Blaschke, M. (2004). Phytophthora root and collar rot of alders in Bavaria: Distribution, modes of spread, and possible management strategies. Plant Pathology, 53, 197–208. doi: 10.1111/j.0032-0862.2004.00957.x.CrossRefGoogle Scholar
  88. Kong, P., Hong, C. X., Tooley, P. W., Ivors, K., Garbelotto, M., & Richardson, P. A. (2004). Rapid identification of Phytophthora ramorum using PCR-SSCP analysis of ribosomal DNA ITS-1. Letters in Applied Microbiology, 38, 433–439. doi: 10.1111/j.1472-765x.2004.01510.x.PubMedCrossRefGoogle Scholar
  89. Korhonen, K., & Stenlid, J. (1998). Biology of Heterobasidion annosum. In S. Woodward, J. Stenlid, R. Karjalainen, & A. Hüttermann (Eds.), Heterobasidion annosum: Biology, ecology, impact and control (pp. 43–70). Wallingford: CAB International.Google Scholar
  90. Krcmar, E. (2008). An examination of the threats and risks to forests arising from invasive alien species. Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia.Google Scholar
  91. La Porta, N., Capretti, P., Thomsen, I. M., Kasanen, R., Hietala, A. M., & Von Weissenberg, K. (2008). Forest pathogens with higher damage potential due to climate change in Europe. Canadian Journal of Plant Pathology, 30, 177–195.Google Scholar
  92. Lamsal, S., Cobb, R. C., Cushman, J. H., Meng, Q., Rizzo, D. M., & Meentemeyer, R. K. (2011). Spatial estimation of the density and carbon content of host populations for Phytophthora ramorum in California and Oregon. Forest Ecology and Management, 262, 989–998. doi: 10.1016/j.foreco.2011.05.033.CrossRefGoogle Scholar
  93. Lavorel, S., Canadell, J., Rambal, S., & Terradas, J. (1998). Mediterranean terrestrial ecosystems: Research priorities on global change effects. Global Ecology and Biogeography Letters, 7(3), 157–166.CrossRefGoogle Scholar
  94. Lemmetty, A., Laamanen, J., Soukainen, M., & Tegel, J. (2011). Emerging virus and viroid pathogen species identified for the first time in horticultural plants in Finland in 1997–2010. Agricultural and Food Science, 20, 29–41. doi: 10.2137/145960611795163060.CrossRefGoogle Scholar
  95. Lemons, J. (2011). The urgent need for Universities to comprehensively address global climate change across disciplines and programs. Environmental Management, 48, 379–391. doi: 10.1007/s00267-011-9699-z.PubMedCrossRefGoogle Scholar
  96. Linares, J. C., Camarero, J. J., & Carreira, J. A. (2010). Competition modulates the adaptation capacity of forests to climatic stress: Insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. Journal of Ecology, 98, 592–603. doi: 10.1111/j.1365-2745.2010.01645.x.CrossRefGoogle Scholar
  97. Linzer, R. E., Otrosina, W. J., Gonthier, P., Bruhn, J., Laflamme, G., Bussières, G., et al. (2008). Inferences on the phylogeography of the fungal pathogen Heterobasidion annosum, including evidence of interspecific horizontal genetic transfer and of human-mediated, long-range dispersal. Molecular Phylogenetics and Evolution, 46, 844–862. doi: 10.1016/j.ympev.2007.12.010.PubMedCrossRefGoogle Scholar
  98. Linzer, R. E., Rizzo, D. M., Cacciola, S. O., & Garbelotto, M. (2009). AFLPs detect low genetic diversity for Phytophthora nemorosa and P. pseudosyringae in the US and Europe. Mycological Research, 113, 298–307. doi: 10.1016/j.mycres.2008.11.004.PubMedCrossRefGoogle Scholar
  99. Litchman, E. (2010). Invisible invaders: Non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecology Letters, 13, 1560–1572. doi: 10.1111/j.1461-0248.2010.01544.x.PubMedCrossRefGoogle Scholar
  100. Loo, J. A. (2009). Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biological Invasions, 11, 81–96. doi: 10.1007/s10530-008-9321-3.CrossRefGoogle Scholar
  101. Loss, S. R., Terwilliger, L. A., & Peterson, A. C. (2011). Assisted colonization: Integrating conservation strategies in the face of climate change. Biological Conservation, 144, 92–100. doi: 10.1016/j.biocon.2010.11.016.CrossRefGoogle Scholar
  102. Lushaj, B. M., Woodward, S., Keča, N., & Intini, M. (2010). Distribution, ecology and host range of Armillaria species in Albania. Forest Pathology, 40, 485–499. doi: 10.1111/j.1439-0329.2009.00624.x.CrossRefGoogle Scholar
  103. MacLeod, A., Pautasso, M., Jeger, M. J., & Haines-Young, R. (2010). Evolution of the international regulation of plant pests and challenges for future plant health. Food Security, 2, 49–70. doi: 10.1007/s12571-010-0054-7.CrossRefGoogle Scholar
  104. Marini, L., Haack, R. A., Rabaglia, R. J., Toffolo, E. P., Battisti, A., & Faccoli, M. (2011). Exploring associations between international trade and environmental factors with establishment patterns of exotic Scolytinae. Biological Invasions, 13, 2275–2288. doi: 10.1007/s10530-011-0039-2.CrossRefGoogle Scholar
  105. Mascheretti, S., Croucher, P., Vettraino, A., Prospero, S., & Garbelotto, M. (2008). Reconstruction of the sudden oak death epidemic in California through microsatellite analysis of the pathogen Phytophthora ramorum. Molecular Ecology, 17, 2755–2768. doi: 10.1111/j.1365-294X.2008.03773.x.PubMedCrossRefGoogle Scholar
  106. Mascheretti, S., Croucher, P. J. P., Kozanitas, M., Baker, L., & Garbelotto, M. (2009). Genetic epidemiology of the Sudden Oak Death pathogen Phytophthora ramorum in California. Molecular Ecology, 18, 4577–4590. doi: 10.1111/j.1365-294X.2009.04379.x.PubMedCrossRefGoogle Scholar
  107. Matías, L., Zamora, R., & Castro, J. (2011). Repercussions of simulated climate change on the diversity of woody-recruit bank in a Mediterranean-type ecosystem. Ecosystems, 14, 672–682. doi: 10.1007/s10021-011-9437-7.CrossRefGoogle Scholar
  108. Maurer, E. P. (2007). Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios. Climatic Change, 82, 309–325. doi: 10.1007/s10584-006-9180-9.CrossRefGoogle Scholar
  109. McLachlan, J. S., Hellmann, J. J., & Schwartz, M. W. (2007). A framework for debate of assisted migration in an era of climate change. Conservation Biology, 21, 297–302. doi: 10.1111/j.1523-1739.2007.00676.x.PubMedCrossRefGoogle Scholar
  110. McLane, S., & Aitken, S. (2011). Whitebark pine (Pinus albicaulis) assisted migration potential: testing establishment north of the species range. Ecological Applications, in press doi: 10.1890/11-0329.1
  111. McPherson, B. A., Mori, S. R., Wood, D. L., Kelly, M., Storer, A. J., Svihra, P., et al. (2010). Responses of oaks and tanoaks to the sudden oak death pathogen after 8 y of monitoring in two coastal California forests. Forest Ecology and Management, 259, 2248–2255. doi: 10.1016/j.foreco.2010.02.020.CrossRefGoogle Scholar
  112. Médail, F., & Quézel, P. (1999). Biodiversity hotspots in the Mediterranean basin: setting global conservation priorities. Conservation Biology, 13, 1510–1513. doi: 10.1046/j.1523-1739.1999.98467.x.CrossRefGoogle Scholar
  113. Meentemeyer, R. K., Cunniffe, N. J., Cook, A. R., Filipe, J. A. N., Hunter, R. D., Rizzo, D. M., et al. (2011). Epidemiological modeling of invasion in heterogeneous landscapes: Spread of sudden oak death in California (1990-2030). Ecosphere, 2, 17. doi: 10.1890/ES10-00192.1.CrossRefGoogle Scholar
  114. Miller, N. L., Bashford, K. E., & Strem, E. (2003). Potential impacts of climate change on California hydrology. JAWRA Journal of the American Water Resources Association, 39, 771–784. doi: 10.1111/j.1752-1688.2003.tb04404.x.CrossRefGoogle Scholar
  115. Moloney, K. A., Holzapfel, C., Tielbörger, K., Jeltsch, F., & Schurr, F. M. (2009). Rethinking the common garden in invasion research. Perspectives in Plant Ecology, Evolution and Systematics, 11, 311–320. doi: 10.1016/j.ppees.2009.05.002.CrossRefGoogle Scholar
  116. Mooney, H. A., & Dunn, E. L. (1970). Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubs. Evolution, 24(2), 292–303.CrossRefGoogle Scholar
  117. Mooney, H. A., Arroyo, M. T. K., Bond, W. J., Canadell, J., Hobbs, R. J., Lavorel, S., et al. (2001). Mediterranean-climate ecosystems. In: global biodiversity in a changing environment. Ecological Studies, 152, 157–199. doi: 10.1007/978-1-4613-0157-8_9.CrossRefGoogle Scholar
  118. Moralejo, E., Belbahri, L., Calmin, G., García-Muñoz, J. A., Lefort, F., & Descals, E. (2008). Strawberry tree blight in Spain, a new disease caused by various Phytophthora species. Journal of Phytopathology, 156, 577–587. doi: 10.1111/j.1439-0434.2008.01397.x.CrossRefGoogle Scholar
  119. Moralejo, E., García-Muñoz, J. A., & Descals, E. (2009a). Susceptibility of Iberian trees to Phytophthora ramorum and P. cinnamomi. Plant Pathology, 58, 271–283. doi: 10.1111/j.1365-3059.2008.01956.x.CrossRefGoogle Scholar
  120. Moralejo, E., Perez-Sierra, A. M., Alvarez, L. A., Belbahri, L., Lefort, F., & Descals, E. (2009b). Multiple alien Phytophthora taxa discovered on diseased ornamental plants in Spain. Plant Pathology, 58, 100–110. doi: 10.1111/j.1365-3059.2008.01930.x.CrossRefGoogle Scholar
  121. Moslonka-Lefebvre, M., Finley, A., Dorigatti, I., Dehnen-Schmutz, K., Harwood, T., Jeger, M. J., et al. (2011). Networks in plant epidemiology: From genes to landscapes, countries and continents. Phytopathology, 101, 392–403. doi: 10.1094/PHYTO-07-10-0192.PubMedCrossRefGoogle Scholar
  122. Notaro, S., & De Salvo, M. (2010). Estimating the economic benefits of the landscape function of ornamental trees in a sub-Mediterranean area. Urban Forestry & Urban Greening, 9, 71–81. doi: 10.1016/j.ufug.2009.09.001.CrossRefGoogle Scholar
  123. Ocasio-Morales, R. G., Tsopelas, P., & Harrington, T. C. (2007). Origin of Ceratocystis platani on native Platanus orientalis in Greece and its impact on natural forests. Plant Disease, 91, 901–904. doi: 10.1094/PDIS-91-7-0901.CrossRefGoogle Scholar
  124. Olofsson, J., Ericson, L., Torp, M., Stark, S., & Baxter, R. (2011). Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nature Climate Change, 1, 220–223. doi: 10.1038/nclimate1142.CrossRefGoogle Scholar
  125. Otrosina, W. J., & Garbelotto, M. (2010). Heterobasidion occidentale sp. nov. and Heterobasidion irregulare nom. nov.: A disposition of North American Heterobasidion biological species. Fungal Biology, 114, 16–25. doi: 10.1016/j.mycres.2009.09.001.PubMedCrossRefGoogle Scholar
  126. Parke, J. L., & Lucas, S. (2008). Sudden oak death and ramorum blight. The Plant Health Instructor, accessed March 2011, available online at: http://www.apsnet.org/edcenter/intropp/lessons/fungi/Oomycetes/Pages/SuddenOakDeath.aspx
  127. Parker, I. M., & Gilbert, G. S. (2004). The evolutionary ecology of novel plant-pathogen interactions. Annual Review of Ecology, Evolution, and Systematics, 35, 675–700. doi: 10.1146/annurev.ecolsys.34.011802.132339.CrossRefGoogle Scholar
  128. Pautasso, M. (2009). Geographical genetics and the conservation of forest trees. Perspectives in Plant Ecology, Systematics and Evolution, 11, 157–189. doi: 10.1016/j.ppees.2009.01.003.CrossRefGoogle Scholar
  129. Pautasso, M., Holdenrieder, O., & Stenlid, J. (2005). Susceptibility to fungal pathogens of forests differing in tree diversity. In M. Scherer-Lorenzen, Ch Koerner, & D. Schulze (Eds.), Forest diversity and function (pp. 263–289). Berlin: Springer. doi: 10.1007/3-540-26599-6_13.CrossRefGoogle Scholar
  130. Pautasso, M., Dehnen-Schmutz, K., Holdenrieder, O., Pietravalle, S., Salama, N., Jeger, M. J., et al. (2010). Plant health and global change – some implications for landscape management. Biological Reviews, 85, 729–755. doi: 10.1111/j.1469-185X.2010.00123.x.PubMedGoogle Scholar
  131. Peakall, R., Ebert, D., Scott, L. J., Meagher, P. F., & Offord, C. A. (2003). Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Molecular Ecology, 12, 2331–2343. doi: 10.1046/j.1365-294X.2003.01926.x.PubMedCrossRefGoogle Scholar
  132. Philibert, A., Desprez-Loustau, M.-L., Fabre, B., Frey, P., Halkett, F., Husson, C., et al. (2011). Predicting invasion success of forest pathogenic fungi from species traits. Journal of Applied Ecology, 48, 1381–1390. doi: 10.1111/j.1365-2664.2011.02039.x.CrossRefGoogle Scholar
  133. Prospero, S., & Rigling, D. (2011). Invasion genetics of the chestnut blight fungus Cryphonectria parasitica in Switzerland. Phytopathology, in press doi: 10.1094/PHYTO-02-11-0055
  134. Raddi, P., & Panconesi, A. (1981). Cypress canker disease in Italy: biology, control possibilities and genetic improvement for resistance. European Journal of Forest Pathology, 11, 340–347. doi: 10.1111/j.1439-0329.1981.tb00104.x.CrossRefGoogle Scholar
  135. Raison, R. J., & Khanna, P. K. (2011). Possible impacts of climate change on forest soil health. In B. P. Singh et al. (Eds.), Soil health and climate change (pp. 257–285). Berlin: Springer. doi: 10.1007/978-3-642-20256-8_12.CrossRefGoogle Scholar
  136. Resco de Dios, V., Fischer, C., & Colinas, C. (2007). Climate change effects on Mediterranean forests and preventive measures. New Forests, 33, 29–40. doi: 10.1007/s11056-006-9011-x.CrossRefGoogle Scholar
  137. Ricciardi, A., & Simberloff, D. (2009). Assisted colonization is not a viable conservation strategy. Trends in Ecology & Evolution, 24, 248–253. doi: 10.1016/j.tree.2008.12.006.CrossRefGoogle Scholar
  138. Richardson, D. M., Hellmann, J. J., McLachlan, J. S., Sax, D. F., Schwartz, M. W., Gonzalez, P., et al. (2009). Multidimensional evaluation of managed relocation. Proceedings of the National Academy of Sciences USA, 106, 9721–9724. doi: 10.1073/pnas.0902327106.CrossRefGoogle Scholar
  139. Rizzo, D. M., Garbelotto, M., & Hansen, E. M. (2005). Phytophthora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Annual Review of Phytopathology, 43, 309–335. doi: 10.1146/annurev.phyto.42.040803.140418.PubMedCrossRefGoogle Scholar
  140. Rohr, J. R., Dobson, A. P., Johnson, P. T. J., Kilpatrick, A. M., Paull, S. H., Raffel, T. R., et al. (2011). Frontiers in climate change–disease research. Trends in Ecology & Evolution, 26, 270–277. doi: 10.1016/j.tree.2011.03.002.CrossRefGoogle Scholar
  141. Santini, A., La Porta, N., Ghelardini, L., & Mittempergher, L. (2008). Breeding against Dutch elm disease adapted to the Mediterranean climate. Euphytica, 163, 45–56. doi: 10.1007/s10681-007-9573-5.CrossRefGoogle Scholar
  142. Sanz-Elorza, M., Mateo, R. G., & González Bernardo, F. (2009). The historical role of agriculture and gardening in the introduction of alien plants in the western Mediterranean. Plant Ecology, 202, 247–256. doi: 10.1007/s11258-008-9474-2.CrossRefGoogle Scholar
  143. Scarascia-Mugnozza, G., Oswald, H., Piussi, P., & Radoglou, K. (2000). Forests of the Mediterranean region: Gaps in knowledge and research needs. Forest Ecology and Management, 132, 97–109. doi: 10.1016/S0378-1127(00)00383-2.CrossRefGoogle Scholar
  144. Schlenzig, A. (2011). A duplex PCR method for the simultaneous identification of Phytophthora ramorum and P. kernoviae. EPPO Bulletin, 41(1), 27–29. doi: 10.1111/j.1365-2338.2010.02431.x.CrossRefGoogle Scholar
  145. Schweigkofler, W., O’Donnell, K., & Garbelotto, M. (2004). Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites using a real-time PCR approach combined with a simple spore trapping method. Applied and Environmental Microbiology, 70, 3512–3520. doi: 10.1128/AEM.70.6.3512-3520.2004.PubMedCrossRefGoogle Scholar
  146. Scirè, M., Motta, E., & D’Amico, L. (2011). Behaviour of Heterobasidion annosum and H. irregulare isolates from central Italy in inoculated Pinus pinea seedlings. Mycological Progress, 10, 85–91.CrossRefGoogle Scholar
  147. Scott, P. M., Burgess, T. I., Barber, P. A., Shearer, B. L., Stukely, M. J. C., Hardy, G. E. St J. et al. (2009). Phytophthora multivora sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia. Persoonia, 22, 1–13.Google Scholar
  148. Seddon, P. J. (2010). From reintroduction to assisted colonization: Moving along the conservation translocation spectrum. Restoration Ecology, 18, 796–802. doi: 10.1111/j.1526-100X.2010.00724.x.CrossRefGoogle Scholar
  149. Smith, J. A. (2010). Seiridium canker of Leyland cypress. FOR279, School of Forest Resources and Conservation, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Accessed August 2011 at http://edis.ifas.ufl.edu/fr341
  150. Solla, A., Dacasa, M. C., Nasmith, C., Hubbes, M., & Gil, L. (2008). Analysis of Spanish populations of Ophiostoma ulmi and O. novo-ulmi using phenotypic characteristics and RAPD markers. Plant Pathology, 57, 33–44. doi: 10.1111/j.1365-3059.2007.01692.x.Google Scholar
  151. Sork, V. L., & Waits, L. (2010). Contributions of landscape genetics – approaches, insights, and future potential. Molecular Ecology, 19, 3489–3495. doi: 10.1111/j.1365-294X.2010.04786.x.PubMedCrossRefGoogle Scholar
  152. Stenlid, J., Oliva, J., Boberg, J. B., & Hopkins, A. J. M. (2011). Emerging diseases in European forest ecosystems and responses in society. Forests, 2, 486–504. doi: 10.3390/f2020486.CrossRefGoogle Scholar
  153. Stukely, M. J. C., & Crane, C. E. (1994). Genetically based resistance of Eucalyptus marginata to Phytophthora cinnamomi. Phytopathology, 84, 650–656. doi: 10.1094/Phyto-84-650.CrossRefGoogle Scholar
  154. Stukenbrock, E. H., & McDonald, B. A. (2008). The origins of plant pathogens in agro-ecosystems. Annual Review of Phytopathology, 46, 75–100. doi: 10.1146/annurev.phyto.010708.154114.PubMedCrossRefGoogle Scholar
  155. Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. E., et al. (2011). Climate change and forest diseases. Plant Pathology, 60, 133–149. doi: 10.1111/j.1365-3059.2010.02406.x.CrossRefGoogle Scholar
  156. Tomlinson, J. A., Dickinson, M., Hobden, E., Robinson, S., Giltrap, P. M., & Boonham, N. (2010). A five-minute DNA extraction method for expedited detection of Phytophthora ramorum following prescreening using Phytophthora spp. lateral flow devices. Journal of Microbiological Methods, 81, 116–120. doi: 10.1016/j.mimet.2010.02.006.PubMedCrossRefGoogle Scholar
  157. Tsopelas, P., Paplomatas, E., Tjamos, S., Soulioti, N., & Kalomoira, E. (2011). First report of Phytophthora ramorum on Rhododendron in Greece. Plant Disease, 95, 223. doi: 10.1094/PDIS-08-10-0607.CrossRefGoogle Scholar
  158. Tubby, K. V., & Webber, J. F. (2010). Pests and diseases threatening urban trees under a changing climate. Forestry, 83, 451–459. doi: 10.1093/forestry/cpq027.CrossRefGoogle Scholar
  159. Tyler, B. M., et al. (2006). Phytophthora genome sequences uncover the evolutionary origins and mechanisms of pathogenesis. Science, 313, 1261–1266. doi: 10.1126/science.1128796.PubMedCrossRefGoogle Scholar
  160. Vacher, C., Vile, D., Helion, E., Piou, D., & Desprez-Loustau, M.-L. (2008). Distribution of parasitic fungal species richness: influence of climate versus host species diversity. Diversity and Distributions, 14, 786–798. doi: 10.1111/j.1472-4642.2008.00479.x.CrossRefGoogle Scholar
  161. Václavík, T., Kupfer, J. A., & Meentemeyer, R. K. (2012). Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). Journal of Biogeography, in press doi:  10.1111/j.1365-2699.2011.02589.x
  162. Vannini, A., Natili, G., Anselmi, N., Montaghi, A., & Vettraino, A. M. (2010). Distribution and gradient analysis of Ink disease in chestnut forests. Forest Pathology, 40, 73–86. doi: 10.1111/j.1439-0329.2009.00609.x.CrossRefGoogle Scholar
  163. Vendramin, G. G., Fady, B., González-Martinez, S. C., Hu, F. S., Scotti, I., Sebastiani, F., et al. (2008). Genetically depauperate but widespread: the case of an emblematic Mediterranean pine. Evolution, 62, 680–688. doi: 10.1111/j.1558-5646.2007.00294.x.PubMedCrossRefGoogle Scholar
  164. Vettraino, A. M., Ceccarelli, B., & Vannini, A. (2009). Susceptibility of some Italian ornamental and forestry species to Phytophthora ramorum. In: Phytophthoras in Forests and Natural Ecosystems. Proceedings of the Fourth Meeting of IUFRO Working Party S07.02.09, PSW-GTR-221, pp. 137-139Google Scholar
  165. Vettraino, A. M., Sukno, S., Vannini, A., & Garbelotto, M. (2010). Diagnostic sensitivity and specificity of different methods used by two laboratories for the detection of Phytophthora ramorum on multiple natural hosts. Plant Pathology, 59(2), 289–300. doi: 10.1111/j.1365-3059.2009.02209.x.CrossRefGoogle Scholar
  166. Watt, M. S., Ganley, R. J., Kriticos, D. J., & Manning, L. K. (2011). Dothistroma needle blight and pitch canker: The current and future potential distribution of two important diseases of Pinus species. Canadian Journal of Forest Research, 41, 412–424. doi: 10.1139/X10-204.CrossRefGoogle Scholar
  167. Webber, J. (2010). Pest risk analysis and invasion pathways for plant pathogens. New Zealand Journal of Forestry Science, 40, S45–S56.Google Scholar
  168. Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., et al. (2011). Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evolutionary Applications, 4, 709–725. doi: 10.1111/j.1752-4571.2011.00192.x.PubMedCrossRefGoogle Scholar
  169. Wickland, A. C., Jensen, C. E., & Rizzo, D. M. (2008). Geographic distribution, disease symptoms and pathogenicity of Phytophthora nemorosa and P. pseudosyringae in California, USA. Forest Pathology, 38, 288–298. doi: 10.1111/j.1439-0329.2008.00552.x.CrossRefGoogle Scholar
  170. Wilkinson, K., Grant, W. P., Green, L. E., Hunter, S., Jeger, M. J., Lowe, P., et al. (2011). Infectious diseases of animals and plants: An interdisciplinary approach. Philosophical Transactions of the Royal Society London B, 366, 1933–1942. doi: 10.1098/rstb.2010.0415.CrossRefGoogle Scholar
  171. Wingfield, M. J., Hammerbacher, A., Ganley, R. J., Steenkamp, E. T., Gordon, T. R., Wingfield, B. D., et al. (2008). Pitch canker caused by Fusarium circinatum – a growing threat to pine plantations and forests worldwide. Australasian Plant Pathology, 37, 319–334. doi: 10.1071/AP08036.CrossRefGoogle Scholar
  172. Wingfield, M. J., Slippers, B., Roux, J., & Wingfield, B. D. (2010). Fifty years of tree pest and pathogen invasions, increasingly threatening world forests. In D. M. Richardson & D. M. Richardson (Eds.), Fifty years of invasion ecology: The legacy of charles elton (pp. 89–99). Oxford: Wiley-Blackwell. doi: 10.1002/9781444329988.ch8.CrossRefGoogle Scholar
  173. Xu, X. M., Harwood, T. D., Pautasso, M., & Jeger, M. J. (2009). Spatio-temporal analysis of an invasive plant pathogen (Phytophthora ramorum) in England and Wales. Ecography, 32, 504–516. doi: 10.1111/j.1600-0587.2008.05597.x.CrossRefGoogle Scholar
  174. Zocca, A., Zanini, C., Aimi, A., Frigimelica, G., La Porta, N., & Battisti, A. (2008). Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy. Acta Oecologica, 33, 307–313. doi: 10.1016/j.actao.2008.01.004.CrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  1. 1.Department of Environmental Science, Policy and Management, Ecosystem Sciences DivisionUniversity of CaliforniaBerkeleyUSA
  2. 2.Centre d’Ecologie Fonctionnelle et Evolutive (CEFE)CNRSMontpellier Cedex 5France

Personalised recommendations