Advertisement

The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper

  • Caroline Djian-Caporalino
  • Sergio Molinari
  • Alain Palloix
  • Aurelio Ciancio
  • Ariane Fazari
  • Nathalie Marteu
  • Nicolas Ris
  • Philippe Castagnone-Sereno
Article

Abstract

The emergence of virulent root-knot nematode populations, able to overcome the resistance conferred by some of the resistance genes (R-genes) in Solanaceous crops, i.e., Mi(s) in tomato, Me(s) in pepper, may constitute a severe limitation to their use in the field. Research has been conducted to evaluate the durability of these R-genes, by comparing the reproduction of several laboratory-selected and wild virulent Meloidogyne incognita isolates, on both susceptible and resistant tomatoes and peppers. We first show that the Me1 R-gene in pepper behaves as a robust R-gene controlling avirulent and virulent Me3, Me7 or Mi-1 isolates. Although the reproductive potential of the virulent isolates was highly variable on susceptible and resistant plants, we also confirm that virulence is highly specific to a determined R-gene on which selection has occurred. Another significant experimental result is the observation that a reproductive fitness cost is associated with nematode virulence against Mi-1 in tomato and Me3 and Me7 in pepper. The adaptative significance of trade-offs between selected characters and fitness-related traits, suggests that, although the resistance can be broken, it may be preserved in some conditions if the virulent nematodes are counter-selected in susceptible plants. All these results have important consequences for the management of plant resistance in the field.

Key words

Meloidogyne spp. Solanaceae Me(s) and Mi-1 resistance genes Virulence specificity Fitness cost of virulence 

Notes

Acknowledgements

This research was carried out with the financial support from the European Commission (FP6-NoE ENDURE), and from the French Ministère de l’Agriculture de l’Alimentation et de la Pêche (MAAP, convention N° C06/03).

References

  1. Ayme, V., Petit-Pierre, J., Souche, S., Palloix, A., & Moury, B. (2007). Molecular dissection of the potato virus Y VPg virulence factor reveals complex adaptations to the pvr2 resistance allelic series in pepper. Journal of General Virology, 88, 1594–1601.PubMedCrossRefGoogle Scholar
  2. Berthou, F., Palloix, A., & Mugniery, D. (2003). Characterisation of virulence in populations of Meloidogyne chitwoodi and evidence for a resistance gene in pepper Capsicum annuum L. line PM217. Nematology, 5, 383–390.CrossRefGoogle Scholar
  3. Bleve-Zacheo, T., Bongiovanni, M., Melillo, M. T., & Castagnone-Sereno, P. (1998). The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection. Plant Science, 133, 79–90.CrossRefGoogle Scholar
  4. Blok, V. C., Jones, J. T., Phillips, M. S., & Trudgill, D. L. (2008). Parasitism genes and host range disparities in biotrophic nematodes: the conundrum of polyphagy versus specialisation. BioEssays, 30, 249–259.PubMedCrossRefGoogle Scholar
  5. Castagnone-Sereno, P. (2002). Genetic variability of nematodes: a threat to the durability of plant resistance genes? Euphytica, 124, 193–199.CrossRefGoogle Scholar
  6. Castagnone-Sereno, P., Bongiovanni, M., & Dalmasso, A. (1994a). Reproduction of virulent isolates of Meloidogyne incognita on susceptible and Mi-resistant tomato. Journal of Nematology, 26, 324–328.Google Scholar
  7. Castagnone-Sereno, P., Wajnberg, E., Bongiovanni, M., Leroy, F., & Dalmasso, A. (1994b). Genetic variation in Meloidogyne incognita virulence against the tomato Mi resistance gene: Evidence from isofemale line selection studies. Theoretical and Applied Genetics, 88, 749–753.CrossRefGoogle Scholar
  8. Castagnone-Sereno, P., Bongiovanni, M., Palloix, A., & Dalmasso, A. (1996). Selection for Meloidogyne incognita virulence against resistance genes from tomato and pepper and specificity of the virulence/resistance determinants. European Journal of Plant Pathology, 102, 585–590.CrossRefGoogle Scholar
  9. Castagnone-Sereno, P., Bongiovanni, M., & Djian-Caporalino, C. (2001). New data on the specificity of the root-knot nematode resistance genes Me1 and Me3 in pepper. Plant Breeding, 120, 429–433.CrossRefGoogle Scholar
  10. Castagnone-Sereno, P., Bongiovanni, M., & Wajnberg, E. (2007). Selection and parasite evolution: a reproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne incognita. Evolutionary Ecology, 21, 259–270.CrossRefGoogle Scholar
  11. Cortada, L., Sorribas, F. J., Ornat, C., Kaloshian, I., & Verdejo-Lucas, S. (2008). Variability in infection and reproduction of Meloidogyne javanica on tomato rootstocks with the Mi resistance gene. Plant Pathology, 57, 1125–1135.CrossRefGoogle Scholar
  12. Dalmasso, A., & Bergé, J. B. (1978). Molecular polymorphism and phylogenetic relationship in some Meloidogyne spp.: Application to the taxonomy of Meloidogyne. Journal of Nematology, 10, 323–332.PubMedGoogle Scholar
  13. Desbiez, C., Gal-On, A., Girard, M., Wipf-Scheibel, C., & Lecoq, H. (2003). Increase in Zucchini yellow mosaic virus symptom severity in tolerant zucchini cultivars is related to a point mutation in P3 protein and is associated with a loss of relative fitness on susceptible plants. Phytopathology, 93, 1478–1484.PubMedCrossRefGoogle Scholar
  14. Devran, Z., & Söğüt, M. A. (2010). Occurrence of virulent root-knot nematode isolates on tomatoes bearing the Mi gene in protected vegetable-growing areas of Turkey. Phytopathology Mediterranea, 38, 245–251.Google Scholar
  15. Djian-Caporalino, C., Pijarowski, L., Januel, A., Lefebvre, V., Daubeze, A., Palloix, A., et al. (1999). Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (Capsicum annuum L.). Theoretical and Applied Genetics, 99, 496–502.CrossRefGoogle Scholar
  16. Djian-Caporalino, C., Pijarowski, L., Fazari, A., Samson, M., Gaveau, L., O’Byrne, C. V., et al. (2001). High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.). Theoretical and Applied Genetics, 103, 592–600.CrossRefGoogle Scholar
  17. Djian-Caporalino, C., Fazari, A., Arguel, M. J., Vernie, T., VandeCasteele, C., Faure, I., et al. (2007). Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theoretical and Applied Genetics, 114, 473–486.PubMedCrossRefGoogle Scholar
  18. Dumas de Vaulx, R., Chambonnet, D., & Pochard, E. (1981). Culture in vitro d'anthères de piment (Capsicum annuum): amélioration des taux d'obtention de plantes chez différents génotypes par des traitements à +35°C. Agronomie, 1(10), 859–864.CrossRefGoogle Scholar
  19. Hendy, H., Pochard, E., & Dalmasso, A. (1985). Transmission héréditaire de la résistance aux nématodes Meloidogyne Chitwood (Tylenchida) portée par deux lignées de Capsicum annuum L.: étude de descendances homozygotes issues d'androgenèse. Agronomie, 5, 93–100.CrossRefGoogle Scholar
  20. Huang, X., McGiffen, M., & Kaloshian, I. (2004). Reproduction of Mi-virulent Meloidogyne incognita isolates on Lycopersicon spp. Journal of Nematology, 36, 69–75.PubMedGoogle Scholar
  21. Jacquet, M., Bongiovanni, M., Martinez, M., Verschave, P., Wajnberg, E., & Castagnone-Sereno, P. (2005). Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene. Plant Pathology, 54, 93–99.CrossRefGoogle Scholar
  22. Janzac, B., Fabre, F., Palloix, A., & Moury, B. (2009). Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances. Molecular Plant Pathology, 10, 599–610.PubMedCrossRefGoogle Scholar
  23. Jarquin-Barberena, H., Dalmasso, A., de Guiran, G., & Cardin, M. C. (1991). Acquired virulence in the plant parasitic nematode Meloidogyne incognita. I. Biological analysis of the phenomenon. Revue de Nématologie, 14(2), 299–303.Google Scholar
  24. Laterrot, H. (1975). Séries de lignées isogéniques de tomate ne différant que par certains gènes de résistance aux maladies. Phytopathologia Mediterranea, 14, 129–130.Google Scholar
  25. Lopez-Perez, J. A., Le Strange, M., Kaloshian, I., & Ploeg, A. T. (2006). Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection, 25, 382–388.CrossRefGoogle Scholar
  26. Meher, H. C., Gajbhiye, V. T., Chawla, G., & Singh, G. (2009). Virulence development and genetic polymorphism in Meloidogyne incognita (Kofoid & White) Chitwood after prolonged exposure to sublethal concentrations of nematicides and continuous growing of resistant tomato cultivars. Pest Management Science, 65, 1201–1207.PubMedCrossRefGoogle Scholar
  27. Methyl Bromide Technical Options Committee (2006). Report of the Methyl Bromide Technical Options Committee. Non-chemical Alternatives Adopted as Replacements to Methyl Bromide on a Large Scale. Nairobi, Kenya: United Nation Environmental Programme, UNON Publishing Section Services, 39–73.Google Scholar
  28. Ornat, C., Verdejo-Lucas, S., & Sorribas, F. J. (2001). A population of Meloidogyne javanica in Spain virulent to the Mi resistance gene in tomato. Plant Disease, 85, 271–276.CrossRefGoogle Scholar
  29. Palloix, A., Ayme, V., & Moury, B. (2009). Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytologist, 183, 190–199.PubMedCrossRefGoogle Scholar
  30. Parlevliet, J. E. (2002). Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica, 124, 147–156.CrossRefGoogle Scholar
  31. Pegard, A., Brizzard, G., Fazari, A., Soucaze, O., Abad, P., & Djian-Caporalino, C. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum L. Phytopathology, 95, 158–165.PubMedCrossRefGoogle Scholar
  32. Petrillo, M. D., & Roberts, P. A. (2005). Fitness of virulent Meloidogyne incognita isolates on susceptible and resistant cowpea. Journal of Nematology, 37, 457–466.PubMedGoogle Scholar
  33. Roberts, P. A. (1995). Conceptual and practical aspects of variability in root-knot nematodes related to host plant resistance. Annual Review of Phytopathology, 33, 199–221.PubMedCrossRefGoogle Scholar
  34. Roberts, P. A., Dalmasso, A., Cap, G. B., & Castagnone-Sereno, P. (1990). Resistance in Lycopersicon peruvianum to isolates of Mi gene-compatible Meloidogyne populations. Journal of Nematology, 22, 585–589.PubMedGoogle Scholar
  35. Sorribas, F. J., Ornat, C., Verdejo-Lucas, S., Galeano, M., & Valero, J. (2005). Effectiveness and profitability of the Mi-resistant tomatoes to control root-knot nematodes. European Journal of Plant Pathology, 111, 29–38.CrossRefGoogle Scholar
  36. Tzortzakakis, E. A., Trudgill, D. L., & Phillips, M. S. (1998). Evidence for a dosage effect of the Mi gene on partially virulent isolates of Meloidogyne javanica. Journal of Nematology, 30, 76–80.PubMedGoogle Scholar
  37. Tzortzakakis, E. A., Adam, M. A. M., Blok, V. C., Paraskevopoulos, C., & Bourtzis, K. (2005). Occurrence of resistance-breaking isolates of root-knot nematodes on tomato in Greece. European Journal of Plant Pathology, 113, 101–105.CrossRefGoogle Scholar
  38. Tzortzakakis, E. A., da Conceicao, I. L. P. M., dos Santos, M. C. V., & de O Abrantes, I. M. (2008). Selection of virulent Meloidogyne individuals within mixed isolates by continuous cultivation on a Mi gene resistant tomato genotype. Journal of Plant Diseases and Protection, 115(5), 234–237.Google Scholar
  39. Vera Cruz, C. M., Bai, J., Oña, I., Leung, H., Nelson, R. J., Mew, T. W., et al. (2000). Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proceedings of the National Academy of Sciences of the USA, 97, 13500–13505.PubMedCrossRefGoogle Scholar
  40. Verdejo-Lucas, S., Cortada, L., Sorribas, F. J., & Ornat, C. (2009). Selection of virulent isolates of Meloidogyne javanica by repeated cultivation of Mi resistance gene tomato rootstocks under field conditions. Plant Pathology, 58, 990–998.CrossRefGoogle Scholar
  41. Williamson, V. M., & Kumar, A. (2006). Nematode resistance in plants: the battle underground. Trends in Genetics, 22, 396–403.PubMedCrossRefGoogle Scholar
  42. Williamson, V. M., & Roberts, P. A. (2009). Mechanisms and genetics of resistance. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot Nematodes (pp. 301–325). Wallingford, UK: CAB International.CrossRefGoogle Scholar
  43. Zijlstra, C., Donkers-Venne, T. H. M., & Fargette, M. (2000). Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology, 2, 847–853.CrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • Caroline Djian-Caporalino
    • 1
  • Sergio Molinari
    • 2
  • Alain Palloix
    • 3
  • Aurelio Ciancio
    • 2
  • Ariane Fazari
    • 1
  • Nathalie Marteu
    • 1
  • Nicolas Ris
    • 4
  • Philippe Castagnone-Sereno
    • 1
  1. 1.INRA PACA, UMR1301 INRA/UNSA/CNRSInteractions Biotiques et Santé VégétaleSophia AntipolisFrance
  2. 2.CNRIstituto per la Protezione delle PianteBariItaly
  3. 3.INRA PACA, UR1052Génétique et Amélioration des Fruits et LégumesMontfavetFrance
  4. 4.INRA PACA, UE1254, Lutte BiologiqueSophia AntipolisFrance

Personalised recommendations