Bemisia tabaci Biotype Q is present in Costa Rica

  • Jose Andres Guevara-CotoEmail author
  • Natalia Barboza-Vargas
  • Eduardo Hernandez-Jimenez
  • Rosemarie W. Hammond
  • Pilar Ramirez-Fonseca


Whiteflies are an insect group that comprises multiple species and biotypes, capable of affecting crops by phloem feeding, virus transmission and promotion of fungal colonization. The distribution of these pests is worldwide. In Costa Rica, a country located in the tropics, the most problematic whiteflies are Bemisia tabaci biotype B and Trialeurodes vaporariorum. In September 2009, two greenhouses in the Alfaro Ruiz region, northwest of the country’s capital, San Jose, were surveyed as part of a larger effort to determine the occurrence of species and races of whiteflies in this agronomically important region. In addition, the insect samples were analyzed to determine the presence of Tomato chlorosis virus (ToCV), a yield-affecting crinivirus transmitted by whiteflies. The results revealed the presence of the Q biotype of B. tabaci, and important invasive species, as well as the expected T. vaporariorum. Viral detection assays identified potentially viruliferous individuals for Tomato chlorosis virus. These results identified a new pest capable of harbouring plant viruses has been identified, as well as a viral agent (ToCV) in a region where it was not reported, and which might cause significant yield losses.


Whitefly Alfaro Ruiz region Biotype Vector Potentially viruliferous Tomato chlorosis virus 



We would like to thank Adam Dinsdale for sharing the Bemisia tabaci consensus sequences used as a quantitative parameter in whitefly sequence identification. We also thank the anonymous reviewers for their comments. This research was funded as part of the CONARE effort to generate a strategy to improve crop production in greenhouses in Costa Rica (EIMHAP Project).


  1. Bink-Moenen, R. M., & Mound, L. A. (1990). Whiteflies: Diversity, biosystematics and evolutionary patterns. In D. Gerling (Ed.), Whiteflies: their bionomics, pest status and management. Department of Zoology (pp. 1–12). Israel: The George S. Wise Faculty of Life Science, Tel Aviv University. p 348.Google Scholar
  2. Brown, J. K. (2000). Molecular markers for the identification and global tracking of whitefly vector-Begomovirus complexes. Virus Res, 71, 233–260.PubMedCrossRefGoogle Scholar
  3. Castro, R., Hernandez, E., Mora, F., Ramirez, P., & Hammond, R. W. (2009). First report of Tomato chlorosis virus in tomato in Costa Rica. Plant Dis, 93(9), 970.CrossRefGoogle Scholar
  4. Chu, D., Wan, F., Zhang, Y., & Brown, J. K. (2010). Change in the biotype composition of Bemisia tabaci in Shandong province of China from 2005 to 2008. Environ Entomol, 39(3), 1028–1036.PubMedCrossRefGoogle Scholar
  5. Dalmon, A., Halkett, F., Granier, M., Delatte, H., & Peterschmitt, M. (2008). Genetic structure of the invasive pest Bemisia tabaci: evidence of limited but persistent genetic differentiation in glasshouse populations. Heredity, 100, 316–325.PubMedCrossRefGoogle Scholar
  6. De Barro, P. J., Driver, F., Trueman, J., & Curran, J. (2000). Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol Phylogenet Evol, 16, 29–36.PubMedCrossRefGoogle Scholar
  7. De Barro PJ, Liu S-S, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol (in press). doi  10.1146/annurev-ento-112408-085504
  8. Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. M., & De Barro, P. J. (2010). Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am, 103(2), 196–208.CrossRefGoogle Scholar
  9. Gil-Salas, F. M., Morris, J., Coyler, A., Budge, G., Boonham, N., Cuadrado, I. M., et al. (2007). Development of real-time RT-PCR assays for the detection of Cucumber vein yellowing virus (CVYV) and Cucurbit yellow stunting disorder virus (CYSDV) in the whitefly vector Bemisia tabaci. J Virol Meth, 1–2, 45–51.CrossRefGoogle Scholar
  10. Gorman, K., Devine, G., Bennison, J., Coussons, P., Punchard, N., & Denholm, I. (2007). Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Pest Manag Sci, 63, 555–558.PubMedCrossRefGoogle Scholar
  11. Liu, S. S., De Barro, P. J., Xu, J., Luan, J. B., Zang, L. S., Ruan, Y.-M., et al. (2007). Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 318, 1769–72.PubMedCrossRefGoogle Scholar
  12. Manzano, M., & van Lenteren, J. (2009). Life history parameters of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) at different environmental conditions on two bean cultivars. Neotrop Entomol, 38(4), 452–458.PubMedCrossRefGoogle Scholar
  13. Morales, F. (2006). Tropical whitefly IPM project. Adv Virus Res, 69, 249–311.CrossRefGoogle Scholar
  14. Morales F (2010) Distribution and dissemination of begomoviruses in Latin America and the Caribbean. Bemisia: Bionomics and Management of a Global Pest. Part 3: 283–318Google Scholar
  15. Papayiannis, L., Brown, J., Seraphides, N., Hadjistylli, M., Ioannou, N., & Katis, N. (2009). A real-time PCR assay to differentiate the B and Q biotypes of the Bemisia tabaci complex in Cyprus. Bull Entomol Res, 99, 573–582.PubMedCrossRefGoogle Scholar
  16. Polston, J., & Anderson, P. (1997). The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant Dis, 81, 1358–1369.CrossRefGoogle Scholar
  17. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22, 4673–4680.PubMedCrossRefGoogle Scholar
  18. Wintermantel, W., Cortez, A., Anchieta, A., Gulati-Sakhuja, A., & Hladky, L. (2008). Co-infection by two Criniviruses alters accumulation of each virus in a host-specific manner and influences efficiency of virus transmission. Phytopathology, 98(12), 1340–1345.PubMedCrossRefGoogle Scholar
  19. Wisler, G. C., & Duffus, J. E. (2001). Transmission properties of whitefly-borne criniviruses and their impact on virus epidemiology. In K. F. Harris, O. P. Smith, & J. E. Duffus (Eds.), Virus-insect-plant interactions (pp. 293–308). San Diego: Academic.CrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • Jose Andres Guevara-Coto
    • 1
    Email author
  • Natalia Barboza-Vargas
    • 1
  • Eduardo Hernandez-Jimenez
    • 1
  • Rosemarie W. Hammond
    • 2
  • Pilar Ramirez-Fonseca
    • 1
  1. 1.Universidad de Costa Rica, CIBCMSan PedroCosta Rica
  2. 2.USDA-BeltsvilleBeltsvilleUSA

Personalised recommendations