European Journal of Plant Pathology

, Volume 131, Issue 1, pp 39–48

Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany

Original Research

Abstract

Fusarium head blight (FHB) is one of the most destructive diseases of wheat. Twelve small commercial wheat fields (size 1–3 hectares) were sampled in Germany for Fusarium populations at three spots per field with 10 heads each. PCR assays using generic primers confirmed 338 isolates as F.graminearum sensu stricto (s.s.) (64.9%) out of 521 Fusarium spp. that were further analyzed. Populations of F. graminearum s.s. in Germany contain three types of trichothecenes with a dominancy of 15-acetyldeoxynivalenol chemotype (92%) followed by 3-acetyldeoxynivalenol chemotype (6.8%) and a few isolates of nivalenol chemotype (1.2%). All these isolates were genotyped using 19 microsatellite loci. The 12 populations showed a high genetic diversity within the small scale sampling areas resulting in 300 different haplotypes. Genetic diversity within populations (71.2%) was considerably higher than among populations (28.8%) as shown by analysis of molecular variance. Gene flow (Nm) between populations ranged from 0.76–3.16. Composition of haplotypes of one population followed over 2 years changed considerably. No correlation between genetic and geographical distance was found. In conclusion, populations of F. graminearum s.s. in Germany display a tremendous genetic variation on a local scale with a restricted diversity among populations.

Keywords

DON Fusarium head blight Mycotoxin Gene flow Population genetics 

Supplementary material

10658_2011_9785_MOESM1_ESM.docx (27 kb)
Table S1Name, use and sequence of oligonucleotides and the product size (DOCX 27.4 kb)

References

  1. Agrios, G. N. (2004). Plant pathology (5th ed., 922 pp.). San Diego, USA: Elsevier Press.Google Scholar
  2. Chandler, E. A., Duncan, R. S., Thomsett, M. A., & Nicholson, P. (2003). Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiological and Molecular Plant Pathology, 62, 355–367.CrossRefGoogle Scholar
  3. Chen, Y., & Zhou, M. G. (2009). Sexual recombination of carbendazim resistance in Fusarium graminearum under field conditions. Pest Management Science, 65, 398–403.PubMedCrossRefGoogle Scholar
  4. Demeke, T., Clear, R. M., Patrick, S. K., & Gaba, D. (2004). Species-specific PCR –based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. International Journal of Food Microbiology, 103, 271–284.CrossRefGoogle Scholar
  5. Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver. 3.5: a new series of perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.PubMedCrossRefGoogle Scholar
  6. Gale, L. R., Bryant, J. D., Calvo, S., Giese, H., Katan, T., O’Donnell, K., et al. (2005). Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics, 171, 985–1001.PubMedCrossRefGoogle Scholar
  7. Gale, L. R., Ward, T. J., Balmas, V., & Kistler, H. C. (2007). Population subdivision of Fusarium graminearum sensu stricto in the Upper Midwestern United States. Phytopathology, 97, 1434–1439.PubMedCrossRefGoogle Scholar
  8. Gale, L. R., Harrison, S. A., Ward, T. J., O’Donnell, K., Milus, E. A., Gale, S. W., et al. (2011). Nivalenol type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology, 101, 124–134.PubMedCrossRefGoogle Scholar
  9. Giraud, T., Fournier, E., Vautrin, D., Solignac, M., Vercken, E., Bakan, B., et al. (2002). Isolation of eight polymorphic microsatellite loci using an enrichment protocol, in the phytopathogenic fungus Fusarium culmorum. Molecular Ecology Notes, 2, 121–123.CrossRefGoogle Scholar
  10. Guo, X. W., Fernando, W. G. D., & Seow-Brock, H. Y. (2008). Population structure chemotype diversity and potential chemotype shifting of Fusarium graminearum in wheat fields of Manitoba. Plant Disease, 92, 756–762.CrossRefGoogle Scholar
  11. Hartl, D. L., & Clark, A. G. (2007). Principles of population genetics (4th ed., 652 pp.). Minnesota, USA: Sinauer Associates Press.Google Scholar
  12. Hedrick, P. W. (2000). Genetics of populations (2nd ed.). Basic Book: Boston.Google Scholar
  13. Hoffman, C. S., & Winston, F. (1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene, 57, 267–272.PubMedCrossRefGoogle Scholar
  14. Jennings, P., Coates, M. E., Walsh, K., Turner, J. A., & Nicholson, P. (2004). Determination of deoxynivalenol and nivalenol producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathology, 53, 643–652.CrossRefGoogle Scholar
  15. Karugia, G. W., Suga, H., Gale, L. R., Nakajima, T., Tomimura, K., & Hyakumachi, M. (2009). Population structure of Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years. Plant Disease, 93, 170–174.CrossRefGoogle Scholar
  16. Knoll, S., Mulfinger, S., Niessen, L., & Vogel, F. (2002). Rapid preparation of Fusarium DNA from cereals for diagnostic PCR using sonification and an extraction kit. Plant Pathology, 51, 728–734.CrossRefGoogle Scholar
  17. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual (388 pp.). Lowa, USA: Blackwell publishing.Google Scholar
  18. Lowe, A., Harris, S., & Ashton, P. (2005). Ecological genetics. Design, analysis, and application (344 pp.). Minnesota, USA: Blackwell Publishing.Google Scholar
  19. Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.PubMedGoogle Scholar
  20. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.PubMedCrossRefGoogle Scholar
  21. McDonald, M. V., & Chapman, R. (1997). The incidence of Fusarium moniliforme on maize from Central America, Africa and Asia during 1992–1995. Plant Pathology, 46, 112–125.CrossRefGoogle Scholar
  22. Miedaner, T., Reinbrecht, C., & Schilling, A. G. (2000). Association among aggressiveness, fungal colonization, and mycotoxin production of 26 isolates of Fusarium graminearum in winter rye head blight. Journal of Plant Disease and Production, 107, 124–134.Google Scholar
  23. Miedaner, T., Reinbrecht, C., Lauber, U., Schollenberger, M., & Geiger, H. H. (2001). Effects of genotype and genotype x environment on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breeding, 120, 97–105.CrossRefGoogle Scholar
  24. Miedaner, T., Cumagun, C. J. R., & Chakraborty, S. (2008). Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156, 129–139.CrossRefGoogle Scholar
  25. Miller, J. D., Greenhalgh, R., Wang, Y. Z., & Lu, M. (1991). Trichothecene chemotypes of there Fusarium species. Mycologia, 82, 121–130.CrossRefGoogle Scholar
  26. Naef, A., & Défago, G. (2006). Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. European Journal of Plant Pathology, 116, 129–143.CrossRefGoogle Scholar
  27. Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: an illustrated manual for identification (193 pp.). Pennsylvania, USA: University Park, Pennsylvania State University.Google Scholar
  28. Nicholson, P., Simpson, D. R., Wilson, G., Rezanoor, H. N., Lees, A. K., Parry, D. W., et al. (1998). Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53, 17–37.CrossRefGoogle Scholar
  29. Nicholson, P., Chandler, E., Draeger, R. C., Gosman, N. E., Dimpson, D. R., Thomsett, M., et al. (2003). Molecular tools to study epidemiology and toxicology of fusarium head blight of cereals. European Journal of Plant Pathology, 109, 691–703.CrossRefGoogle Scholar
  30. O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C., & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41, 600–623.PubMedCrossRefGoogle Scholar
  31. O’Donnell, K., Ward, T. J., Aberra, D., Kistler, H. C., Aoki, T., Orwig, N., et al. (2008). Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genetics and Biology, 45, 1514–1522.PubMedCrossRefGoogle Scholar
  32. Peakall, R., & Smouse, P. E. (2006). Genalex 6: genetic analysis in Excel. Population genetics software for teaching and research. Molecular Ecology Notes, 6, 288–295.CrossRefGoogle Scholar
  33. Schmale, D. G., Leslie, J. F., Zeller, K. A., Saleh, A. A., Shields, E. J., & Bergstrom, G. C. (2006). Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology, 96, 1021–1026.CrossRefGoogle Scholar
  34. Shaner, G. (2003). Epidemiology of Fusarium Head Blight of small grain cereals in North America. (pp. 84–119). In K. J. Leonard, & W. R. Bushnell (Eds.), Fusarium Head Blight of Wheat and Barley (512 pp.). St. Paul, Minnesota, USA: APS Press.Google Scholar
  35. Stack, R. W. (2003). History of Fusarium head blight with emphasis on North America. (pp. 1–34). In K. J. Leonard, & W. R. Bushnell (Eds.), Fusarium Head Blight of Wheat and Barley (512 pp.). St. Paul, Minnesota, USA: APS Press.Google Scholar
  36. Suga, H., Gale, L. R., & Kistler, H. C. (2004). Development of VNTR markers for two Fusarium graminearum clade spcies. Molecular and Ecology Notes, 4, 468–470.CrossRefGoogle Scholar
  37. Suga, H., Karugia, G. W., Ward, T., Gale, L. R., Tominura, K., Nakajima, T., et al. (2008). Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology, 98, 159–166.PubMedCrossRefGoogle Scholar
  38. Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.CrossRefGoogle Scholar
  39. Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E., & O’Donnell, K. (2002). Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences of the United States of America, 99, 9278–9283.PubMedCrossRefGoogle Scholar
  40. Ward, T. J., Clear, R. M., Rooney, A. P., O’Donnell, K., Gaba, D., Patrick, S., et al. (2008). An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45, 473–484.PubMedCrossRefGoogle Scholar
  41. Windels, C. E., & Kommedahl, T. (1984). Late season colonization and survival of Fusarium graminearum group II in cornstalks in Minnesota. Plant Disease, 68, 791–793.Google Scholar
  42. Xu, X. M., Nicholson, P., Thomsett, M. A., Simpson, D., Cooke, B. M., Doohan, F. M., et al. (2008). Relationship between the fungal complex causing Fusarium head blight of wheat and environmental conditions. Phytopathology, 98, 69–78.PubMedCrossRefGoogle Scholar
  43. Yang, L., Van der Lee, T., Yang, X., Yu, D., & Waalwijk, C. (2008). Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology, 98, 719–727.PubMedCrossRefGoogle Scholar
  44. Yli-Mattila, T., Gagkeva, T., Ward, T., Aoki, T., Kistler, H. C., & O’Donnell, K. (2009). A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from Russian Far East. Mycologia, 101, 841–852.PubMedCrossRefGoogle Scholar
  45. Zeller, K. A., Bowden, R. L., & Leslie, J. F. (2003). Diversity of epidemic populations of Gibberella zeae from small quadrants in Kansas and North Dakota. Phytopathology, 93, 874–880.PubMedCrossRefGoogle Scholar
  46. Zeller, K. A., Bowden, R. L., & Leslie, J. F. (2004). Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Molecular Ecology, 13, 563–571.PubMedCrossRefGoogle Scholar
  47. Zhang, Z., Zhang, H., Van der Lee, T., Chen, W. Q., Arens, P., Xu, J., et al. (2010). Geographical substructure of Fusarium asiaticum isolates collected from barley in China. European Journal of Plant Pathology, 127, 239–248.CrossRefGoogle Scholar
  48. Zhang, H., Zhang, Z., Van der Lee, T., Xu, J., Yang, L., Yu, D., et al. (2010). Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology, 100, 328–336.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • Firas Talas
    • 1
    • 2
  • Heiko K. Parzies
    • 3
  • Thomas Miedaner
    • 1
  1. 1.State Plant Breeding Institute (720)Universität HohenheimStuttgartGermany
  2. 2.National Commission of Biotechnology (NCBT)DamascusSyria
  3. 3.Institute of Plant Breeding, Seed Science and Population GeneticsUniversität Hohenheim (350)StuttgartGermany

Personalised recommendations