European Journal of Plant Pathology

, Volume 130, Issue 3, pp 311–324 | Cite as

Chalara fraxinea is an invasive pathogen in France

  • Claude Husson
  • Bruno Scala
  • Olivier Caël
  • Pascal Frey
  • Nicolas Feau
  • Renaud Ioos
  • Benoît Marçais
Article

Abstract

Decline induced by Chalara fraxinea is an emerging disease that severely affects ash stands in Europe. The disease appears to have an invasive spread from East to West of Europe in the last decade. The teleomorphic stage, Hymenoscyphus pseudoalbidus, that occurs as apothecia on ash rachis in the litter was recently described. The origin of ash decline remains unclear as a cryptic species, H. albidus, a long-established fungus in Europe, could be present in the same niche, and as in Switzerland, H. pseudoalbidus was shown to have been present long before the recent epidemic outbreak. In France, the emerging disease is very recent and clearly restrained to Northeastern France. We thus collected isolates from infected hosts and from apothecia/ash rachis both inside and outside the infected area in France in order to compare them on the basis of pathogenicity towards ash seedlings and sequences of the ITS regions and of three single-copy genes. We showed that two population types exhibiting about 2% base pair polymorphism in the sequences analysed were present in Northern France. The first type, corresponding to H. pseudoalbidus, was present on rachis and infected hosts only in Northeastern France and showed strong pathogenicity towards ash seedlings in inoculation tests. By contrast, the second type, which corresponds to H. albidus, was present throughout Northern France and showed no pathogenicity towards ash seedlings. Our study confirms the results of Queloz et al. (2010) who presented molecular evidences for the existence of two cryptic species, H. albidus and H. pseudoalbidus. The results strongly suggest that Chalara fraxinea/H. pseudoalbidus is a recent invader in France.

Keywords

Ash Emerging disease Hymenoscyphus Pathogenicity Single-copy genes Real-time PCR 

References

  1. Aguileta, G., Marthey, S., Chiapello, H., Lebrun, M. H., Rodolphe, F., Fournier, E., et al. (2008). Assessing the performance of single-copy genes for recovering robust phylogenies. Systematic Biology, 57, 613–627.PubMedCrossRefGoogle Scholar
  2. Anagnostakis, S. L. (1987). Chestnut blight: the classical problem of an introduced pathogen. Mycologia, 79, 23–37.CrossRefGoogle Scholar
  3. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19, 535–544.PubMedCrossRefGoogle Scholar
  4. Antonovics, J., Hood, M. E., Thrall, P. H., Abrams, J. Y., & Duthie, G. M. (2003). Herbarium studies on the distribution of anther-smut fungus (Microbotryum violaceum) and Silene species (Caryophyllaceae) in the Eastern United States. American Journal of Botany, 90, 1522–1531.CrossRefGoogle Scholar
  5. Bakys, R., Vasaitis, R., Barklund, P., Thomsen, I. M., & Stenlid, J. (2009). Occurrence and pathogenicity of fungi in necrotic and non-symptomatic shoots of declining common ash (Fraxinus excelsior) in Sweden. European Journal of Forest Research, 128, 51–60.CrossRefGoogle Scholar
  6. Barnes, I., Crous, P. W., Wingfield, B. D., & Wingfield, M. J. (2004). Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Studies in Mycology, 50, 551–565.Google Scholar
  7. Chandelier, A., André, F., & Laurent, F. (2010). Detection of Chalara fraxinea in common ash (Fraxinus excelsior) using real time PCR. Forest Pathology, 40, 87–95.CrossRefGoogle Scholar
  8. Desmazières, J. B. (1851). Peziza (Phialea cyathoidea) albida. Annales des Sciences Naturelles, Botanique, Série 3, 16, 323–324Google Scholar
  9. Desprez-Loustau, M. L., Robin, C., Buée, M., Courtecuisse, R., Garbaye, J., Suffert, F., et al. (2007). The fungal dimension of biological invasions. Trends in Ecology and Evolution, 22, 472–480.PubMedCrossRefGoogle Scholar
  10. Desprez-Loustau, M. L., Courtecuisse, R., Robin, C., Husson, C., Moreau, P. A., Blancard, et al. (2010). Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France. Biological Invasions, 12, 157–172.CrossRefGoogle Scholar
  11. Feau, N. (2010, August). Fishing single copy genes out of sequenced genomes for multilocus phylogenetics in non-model fungi. Poster P1.84. 9th International Mycological Congress, Edimbourg.Google Scholar
  12. Feau, N., Hamelin, R. C., & Bernier, L. (2007). Variability of nuclear SSU-rDNA group introns within Septoria species: incongruence with host sequence phylogenies. Journal of Molecular Evolution, 64, 489–499.PubMedCrossRefGoogle Scholar
  13. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.PubMedCrossRefGoogle Scholar
  14. Ioos, R., Andrieux, A., Marçais, B., & Frey, P. (2006). Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. Fungal Genetics and Biology, 43, 511–529.PubMedCrossRefGoogle Scholar
  15. Ioos, R., Kowalski, T., Husson, C., & Holdenrieder, O. (2009). Rapid in planta detection of Chalara fraxinea by a real-time PCR assay using a dual-labelled probe. European Journal of Plant Pathology, 125, 329–335.CrossRefGoogle Scholar
  16. Ioos, R., Fabre, B., Saurat, C., Fourrier, C., Frey, P., & Marçais, B. (2010). Development, comparison, and validation of real-time and conventional PCR tools for the detection of the fungal pathogens causing brown spot and red band needle blights of pine. Phytopathology, 100, 105–114.PubMedCrossRefGoogle Scholar
  17. Johansson, S. B. K., Vasaitis, R., Ihrmark, K., Barklund, P., & Stenlid, J. (2010). Detection of Chalara fraxinea from tissue of Fraxinus excelsior using species-specific ITS primers. Forest Pathology, 40, 111–115.CrossRefGoogle Scholar
  18. Kowalski, T. (2006). Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathology, 36, 264–270.CrossRefGoogle Scholar
  19. Kowalski, T., & Holdenrieder, O. (2009). The teleomorph of Chalara fraxinea, the causal agent of ash dieback. Forest Pathology, 39, 304–308.CrossRefGoogle Scholar
  20. Marçais, B., Bergot, M., Perarnaud, V., Levy, A., & Desprez-Loustau, M. L. (2004). Prediction and mapping of the impact of winter temperatures on the development of P. cinnamomi induced cankers on red and pedunculate oak. Phytopathology, 94, 826–831.PubMedCrossRefGoogle Scholar
  21. Marthey, S., Aguileta, G., Rodolphe, F., Gendrault, A., Giraud, T., Fournier, E., et al. (2008). FUNYBASE: a FUNgal phYlogenomic dataBASE. BMC Bioinformatics, 9, 456.PubMedCrossRefGoogle Scholar
  22. Mougou, A., Dutech, C., & Desprez-Loustau, M. L. (2008). New insights into the identity and origin of the causal agent of oak powdery mildew in Europe. Forest Pathology, 38, 275–287.CrossRefGoogle Scholar
  23. Queloz, V., Grünig, C. R., Berndt, R., Kowalski, T., Sieber, T. N., & Holdenrieder, O. (2010). Cryptic speciation in Hymenoscyphus albidus. Forest Pathology. doi:10.1111/j.1439-0329.2010.00645.x (in press).Google Scholar
  24. Rozen, S., & Skaletsky, H. (2000). PRIMER3 on the WWW for general users and for biologists programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: Methods in molecular biology (pp. 365–386). Totowa: Humana.Google Scholar
  25. Schmitt, I., Crespo, A., Divakar, P. K., Fankhauser, J. D., Herman-Sackett, E., Kalb, K., et al. (2009). New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia, 23, 35–40.PubMedGoogle Scholar
  26. Schumacher, J., Kehr, R., & Leonhard, S. (2010). Mycological and histological investigations of Fraxinus excelsior nursery saplings naturally infected by Chalara fraxinea. Forest Pathololy, 40, 419–429.CrossRefGoogle Scholar
  27. Weste, G., & Marks, G. C. (1987). The biology of Phytophthora cinnamomi in Australasian forests. Annual Review of Phytopathology, 25, 207–229.CrossRefGoogle Scholar
  28. White, T. M., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic.Google Scholar
  29. Woods, A., Coates, D. K., & Hamann, A. (2005). Is an unprecedented Dothistroma Needle Blight epidemic related to climate change? BioScience, 55, 761–769.CrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • Claude Husson
    • 1
  • Bruno Scala
    • 1
  • Olivier Caël
    • 1
  • Pascal Frey
    • 1
  • Nicolas Feau
    • 2
  • Renaud Ioos
    • 3
  • Benoît Marçais
    • 1
  1. 1.INRA, Nancy UniversitéUMR 1136 Interactions Arbres/MicroorganismesChampenouxFrance
  2. 2.INRA, UMR 1202 BIOGECO69 route d’ArcachonCestas CedexFrance
  3. 3.Anses, Laboratoire de la Santé des VégétauxUnité de MycologieMalzévilleFrance

Personalised recommendations