Advertisement

European Journal of Plant Pathology

, Volume 129, Issue 4, pp 609–620 | Cite as

Promoter analysis of the pepper antimicrobial protein gene, CaAMP1, during bacterial infection and abiotic stress

  • Sung Chul Lee
Article

Abstract

In a previous study, we isolated and functionally characterized a novel antimicrobial protein gene with a high level of antimicrobial activity, CaAMP1, from pepper leaves infected with Xanthomonas campestris pv. vesicatoria. In this study, a series of 5′-deletions in the region −1190 bp upstream of the transcriptional start site of the CaAMP1 gene were analyzed in tobacco to determine the activity of the CaAMP1 promoter fused to the β-glucuronidase (GUS) reporter gene, using an Agrobacterium-mediated transient expression assay. The CaAMP1 gene and promoter were locally and systemically induced by microbial infection. Several biotic and abiotic stress-related cis-acting elements, including GT1 box, W box, MYB, RAV1, ERE, and LTRE, were localized in the upstream promoter region of the CaAMP1 gene. The −1190, −967 and −626 bp regions of the CaAMP1 promoter activated by Pseudomonas syringae pv. tabaci infection, were simultaneously activated by treatments with salicylic acid and methyl jasmonate. The −1190 bp CaAMP1 promoter was also activated by abscisic acid, NaCl, and low temperature. Expression of the pepper transcription factor, CARAV1, but not CAZFP1, contributed to the activation of the CaAMP1 promoter. Deletion analysis of the CaAMP1 promoter suggested that some novel cis-acting elements are necessary for the induction of CaAMP1 expression during pathogen exposure and that environmental stresses may reside in the genomic sequence upstream of the CaAMP1 gene between −626 bp and −425 bp.

Keywords

CaAMP1 Pathogenesis related gene Promoter analysis Systemic acquired resistance Transient assay W-box 

References

  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., & Shinozaki, K. (1997). Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. The Plant Cell, 9, 1859–1868.PubMedCrossRefGoogle Scholar
  2. Andrews, L. B., & Curtis, W. R. (2005). Comparison of transient protein expression in tobacco leaves and plant suspension culture. Biotechnology Progress, 21, 946–952.PubMedCrossRefGoogle Scholar
  3. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., et al. (2002). MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 415, 977–983.PubMedCrossRefGoogle Scholar
  4. Asselbergh, B., Vleesschauwer, D. D., & Hofte, M. (2008). Global switches and fine-tuning-ABA modulates plant pathogen defense. Molecular Plant-Microbe Interactions, 12, 709–719.CrossRefGoogle Scholar
  5. Baudry, A., Heim, M. A., Dubreucq, B., Caboche, M., Weisshaar, B., & Lepiniec, L. (2004). TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal, 39, 366–380.PubMedCrossRefGoogle Scholar
  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRefGoogle Scholar
  7. Bray, E. A. (1997). Plant responses to water deficit. Trends in Plant Science, 2, 48–54.CrossRefGoogle Scholar
  8. Broglie, K., Chet, I., Holliday, M., Cressman, R., Riddle, P., Knowlton, S., et al. (1991). Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254, 1194–1197.PubMedCrossRefGoogle Scholar
  9. Brown, R. L., Kazan, K., McGrath, K. C., Maclean, D. J., & Manners, J. M. (2003). A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiology, 132, 1020–1032.PubMedCrossRefGoogle Scholar
  10. Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgem, T., et al. (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell, 14, 559–574.PubMedCrossRefGoogle Scholar
  11. Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156–159.PubMedCrossRefGoogle Scholar
  12. Datta, S., Muthukrisnan, S., & Datta, S. K. (1999). Expression and function of PR proteins in transgenic plants. In S. K. Datta & S. Muthudrishan (Eds.), Pathogenesis-related proteins in plants (pp. 261–277). New York: CRC.Google Scholar
  13. DeGray, G., Rajasekaran, K., Smith, F., Sanford, J., & Daniell, H. (2001). Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiology, 127, 852–862.PubMedCrossRefGoogle Scholar
  14. Dunn, M. A., White, A. J., Vural, S., & Hughes, M. A. (1998). Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Molecular Biology, 38, 551–564.PubMedCrossRefGoogle Scholar
  15. Earley, K. W., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Song, K. M., et al. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal, 45, 616–629.PubMedCrossRefGoogle Scholar
  16. Eulgem, T., Rushton, P. J., Robatzek, S., & Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5, 199–206.PubMedCrossRefGoogle Scholar
  17. Finkelstein, R. R., & Lynch, T. J. (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. The Plant Cell, 12, 599–609.PubMedCrossRefGoogle Scholar
  18. Gao, A., Hakimi, S. M., Mittanck, C. A., Wu, Y., Woerner, B. M., Stark, D. M., et al. (2000). Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 18, 1307–1310.PubMedCrossRefGoogle Scholar
  19. Guilitinan, M. J., Marcotte, W. R., & Quatrano, R. S. (1990). A plant leucine zipper protein that recognizes an abscisic acid response element. Science, 250, 267–271.CrossRefGoogle Scholar
  20. Hao, D., Ohme-Takagi, M., & Sarai, A. (1998). Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. The Journal of Biological Chemistry, 273, 26857–26861.PubMedCrossRefGoogle Scholar
  21. Ingram, J., & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 377–403.PubMedCrossRefGoogle Scholar
  22. Jefferson, R. A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.CrossRefGoogle Scholar
  23. Kagaya, Y., Ohmiya, K., & Hattori, T. (1999). RAV1, a novel DNA-binding protein, binds top bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Research, 27, 470–478.PubMedCrossRefGoogle Scholar
  24. Keller, R., Renz, F. S., & Kossmann, J. (1999). Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. The Plant Journal, 19, 131–141.PubMedCrossRefGoogle Scholar
  25. Kenton, P., Darby, R. M., Shelley, G., & Draper, J. (2000). A PR-5 gene promoter from Asparagus officinalis (AoPRT-L) is not induced by abiotic stress, but is activated around sites of pathogen challenge and salicylate in transgenic tobacco. Molecular Plant Pathology, 1, 367–378.PubMedCrossRefGoogle Scholar
  26. Kim, S. H., Hong, J. K., Lee, S. C., Sohn, K. H., Jung, H. W., & Hwang, B. K. (2004). CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Molecular Biology, 55, 883–904.PubMedGoogle Scholar
  27. Kim, C. Y., & Zhang, S. (2004). Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. The Plant Journal, 38, 142–151.PubMedCrossRefGoogle Scholar
  28. Koroleva, O. A., Tomlinson, M. L., Leader, D., Shaw, P., & Doonan, J. H. (2005). High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP–ORF fusions. The Plant Journal, 41, 162–174.PubMedCrossRefGoogle Scholar
  29. Lee, S. C., Choi, H. W., Hwang, I. S., Choi, D. S., & Hwang, B. K. (2006). Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta, 224, 1209–1225.PubMedCrossRefGoogle Scholar
  30. Lee, S. C., Hong, J. K., Kim, Y. J., & Hwang, B. K. (2000). Pepper gene encoding thionin is differentially induced by pathogens, ethylene and methyl jasmonate. Physiological and Molecular Plant Pathology, 56, 207–216.CrossRefGoogle Scholar
  31. Lee, Y. K., & Hwang, B. K. (1996). Differential induction and accumulation of β-1, 3-glucanase and chitinase isoforms in the intercellular space and leaf tissues of pepper by Xanthomonas campestris pv. vesicatoria infection. Journal of Phytopathology, 144, 79–87.CrossRefGoogle Scholar
  32. Lee, S. C., & Hwang, B. K. (2005). Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta, 221, 790–800.PubMedCrossRefGoogle Scholar
  33. Lee, S. C., & Hwang, B. K. (2006). Identification and deletion analysis of the promoter of the pepper SAR8.2 gene activated by bacterial infection and abiotic stresses. Planta, 224, 255–267.PubMedCrossRefGoogle Scholar
  34. Lee, S. C., & Hwang, B. K. (2009). Functional roles of the pepper antimicrobial protein gene, CaAMP1, in abscisic acid signaling, and salt and drought tolerance in Arabidopsis. Planta, 229, 383–391.PubMedCrossRefGoogle Scholar
  35. Lee, S. C., Hwang, I. S., Choi, H. W., & Hwang, B. K. (2008). Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance. Plant Physiology, 148, 1004–1020.PubMedCrossRefGoogle Scholar
  36. Lee, S. C., Kim, N. H., Kim, D. S., & Hwang, B. K. (2007). Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses. Plant Science, 172, 236–245.CrossRefGoogle Scholar
  37. Li, Q., Lawrence, C. B., Xing, H. Y., Babbitt, R. A., Bass, W. T., Maiti, I. B., et al. (2001). Enhanced disease resistance conferred by expression of an antimicrobial magainin analogue in transgenic tobacco. Planta, 212, 635–639.PubMedCrossRefGoogle Scholar
  38. Lin, P. C., Hwang, S. G., Endo, A., Okamoto, M., Koshiba, T., & Cheng, W. H. (2007). Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiology, 143, 745–758.PubMedCrossRefGoogle Scholar
  39. Manners, J. M., Renninckx, I. A. M. A., Vermaere, K., Kazan, K., Brown, R. L., Morgan, A., et al. (1998). The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Molecular Biology, 38, 1071–1080.PubMedCrossRefGoogle Scholar
  40. Ohme-Takagi, M., Suzuki, K., & Shinshi, H. (2000). Regulation of ethylene-induced transcription of defense genes. Plant & Cell Physiology, 41, 1187–1192.CrossRefGoogle Scholar
  41. Reymond, R., & Farmer, E. E. (1998). Jasmonate and salicylate as global signals for defence gene expression. Current Opinion in Plant Biology, 1, 404–411.PubMedCrossRefGoogle Scholar
  42. Riechmann, J. L. (2002). Transcriptional regulation: a genomic overview. In C. R. Somerville & E. M. Meyerowitz (Eds.), The Arabidopsis Book (pp. 1–46). Rockville: American Society of Plant Biologists.Google Scholar
  43. Robatzek, S., & Somssich, I. E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes & Development, 16, 1139–1149.CrossRefGoogle Scholar
  44. Rushton, P. J., Reinstadler, A., Lipka, V., Lippok, B., & Somssich, I. E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant Cell, 14, 749–762.PubMedCrossRefGoogle Scholar
  45. Rushton, P. J., & Somssich, I. E. (1998). Transcriptional control of plant genes responsive to pathogens. Current Opinion in Plant Biology, 1, 311–315.PubMedCrossRefGoogle Scholar
  46. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell, 8, 1809–1819.PubMedCrossRefGoogle Scholar
  47. Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson, I. W., et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiology, 132, 999–1010.PubMedCrossRefGoogle Scholar
  48. Shinozaki, K., & Yamaguchi-Shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiology, 115, 327–334.PubMedCrossRefGoogle Scholar
  49. Shinshi, H., Usami, S., & Ohme-Takagi, M. (1995). Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Molecular Biology, 27, 923–932.PubMedCrossRefGoogle Scholar
  50. Singh, K., Foley, R. C., & Onate-Sanchez, L. (2002). Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 5, 430–436.PubMedCrossRefGoogle Scholar
  51. Sohn, K. H., Lee, S. C., Jung, H. W., Hong, J. K., & Hwang, B. K. (2006). Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Molecular Biology, 61, 897–915.PubMedCrossRefGoogle Scholar
  52. Takatsuji, H., & Matsumoto, T. (1996). Target-sequence recognition by separate-type Cys2/His2 zinc finger proteins in Plants. The Journal of Biological Chemistry, 271, 23368–23373.PubMedCrossRefGoogle Scholar
  53. Turck, F., Zhou, A., & Somssich, I. E. (2004). Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in Parsley. The Plant Cell, 16, 2573–2585.PubMedCrossRefGoogle Scholar
  54. Uknes, S., Dincher, S., Friedrich, L., Negrotto, D., Williams, S., Thompson-Taylor, H., et al. (1993). Regulation of pathogenesis-related protein-1a gene expression in tobacco. The Plant Cell, 5, 159–169.PubMedCrossRefGoogle Scholar
  55. Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., et al. (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. The Plant Cell, 3, 1085–1094.PubMedCrossRefGoogle Scholar
  56. Yang, Y., Li, R., & Qi, M. (2000). In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. The Plant Journal, 22, 543–551.PubMedCrossRefGoogle Scholar
  57. Yu, D., Chen, C., & Chen, Z. (2001). Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell, 13, 1527–1540.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  1. 1.Department of Life ScienceChung-Ang UniversitySeoulSouth Korea

Personalised recommendations