Advertisement

European Journal of Plant Pathology

, Volume 129, Issue 2, pp 315–329 | Cite as

Diversity and fitness of Plasmopara viticola isolates resistant to QoI fungicides

  • Marie-France Corio-CostetEmail author
  • Marie-Cécile Dufour
  • Jérémy Cigna
  • Pierre Abadie
  • Wei-Jen Chen
Article

Abstract

The effectiveness of Quinone outside Inhibitor (QoI) fungicides against grape downy mildew in European vineyards has significantly decreased in the last decade. One nucleotide polymorphism, G143A in the cytochrome b gene of Plasmopara viticola, is involved in resistance to QoIs. Previous genetic examination on the mitochondrial genomes showed four major haplotypes (IR, IS, IIR, IIS) coexisting in European vineyards. A resistant allele (G143A) was present in IR and IIR haplotypes. The purpose of the present study was to estimate the diversity of the different mitochondrial haplotypes and their distribution in QoI-resistant populations before evaluating the potential cost of the resistant mutation G143A in P. viticola population. From 2000 to 2004, the frequencies of resistant isolates ranged from 0% to 23.25% with an average of 4.64 % among the populations examined. To evaluate the fitness of sensitive and resistant isolates, a comparison of different biological parameters including latent period, spore production and infection frequency was performed, enabling a fitness index (FI) to be determined. Resistant isolates exhibited greater infection frequency than sensitive isolates, whereas no significant difference was found in sporulation ability and latent period between sensitive and resistant isolates. To further investigate competitiveness among isolates, an assay including two resistant isolates in different proportion with a sensitive isolate was conducted on eight asexual growing cycles in the absence of a QoI fungicide. The competitiveness of resistant isolates varied according to their fitness parameters, suggesting that there is no noticeable cost of QoI resistance in controlled conditions in Plasmopara viticola.

Keywords

Cytochrome b Fitness Fungicide resistance Grapevine downy mildew Mitochondrial variability qPCR 

Abbreviations

CAPS

Cleaved Amplified Polymorphic Sequence

FI

fitness index

QoI

Quinone outside Inhibitor

ARMS

Amplification refractory mutation system

SNPs

Single Nucleotide Polymorphisms

Notes

Acknowledgements

We thank D. Gobbin and colleagues from IFV for their help in sampling of the collection and Aquitaine Region Government for their financial support. We thank S. Gambier, S. Richart-Cervera, and L. Douence for technical support. We thank J-L. Genet from Dupont Protection for the gift of famoxadone.

References

  1. Abadie, P. (2007). Adaptation du mildiou de la vigne à la pression fongicide: étude du fitness. MSc thesis of Genetic and Plant Development. Bordeaux University. pp. 20.Google Scholar
  2. Anderson, J. B. (2005). Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nature Reviews Microbiolology, 7, 547–556.CrossRefGoogle Scholar
  3. Antonovics, J., & Alexander, H. M. (1989). The concept of fitness in plant-fungal pathogen systems. In W. E. Fry & K. J. Leonard (Eds.), Plant disease epidemiology (pp. 185–214). New-York: Mc Graw-Hill.Google Scholar
  4. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, J., & Parr-Bobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.CrossRefPubMedGoogle Scholar
  5. Baudoin, A. I., Olaya, G., Delmotte, F., Colcol, J. F., & Sierotzki, H. (2008). QoI resistance of Plasmopara viticola and Erysiphe necator in the Mid-Atlantic United States. Plant Management Network. Plant Health Progress. doi:10.1094/PHP-2008-0211-02-RS.
  6. Chen, W.-J., Delmotte, F., Richard Cervera, S., Douence, L., Greif, C., & Corio-Costet, M.-F. (2007). At least two origins of fungicide resistance in grapevine downy mildew populations. Applied Environmental Microbiology, 73, 5162–5172.CrossRefGoogle Scholar
  7. Collina, M., Landi, L., Guerinin, P., Branzanti, M. B., & Brunelli, A. (2005). QoI resistance of Plasmopara viticola in Italy: biological and quantitative real-Time PCR approaches. In H. W. Dehne, U. Gisi, K. H. Kuck, P. E. Russell, & H. Lyr (Eds.), Modern fungicides and antifungal compounds IV (pp. 81–88). Hampshire: BCPC.Google Scholar
  8. Corio-Costet, M. -F., Delmotte, F., Martinez, F., Giresse, X., Raynal, M., Richart-Cervera, S., et al. (2006). Resistance of Plasmopara viticola to QoI fungicides: origin and diversity. Paper presented at the 8th Int. Conf on Pest and Diseases 2006, pp 612-620, AFPP Eds, CD-Rom.Google Scholar
  9. Corio-Costet, M. -F., Martinez, F., Delmotte, F., Douence, L., Richart-Cervera, S., & Chen, W. -J. (2008). Resistance of Plasmopara viticola to QoI fungicides: Origin and diversity. In H. W. Dehne, U. Gisi, K. H. Kuck, P. E. Russell, & H. Lyr (Eds.), Modern fungicides and Antifungal compounds V (pp. 107–112). Brauschweig: DPG Selbstverlag.Google Scholar
  10. Cowen, L. E., Kohn, L. M., & Anderson, J. B. (2001). Divergence in fitness and evolution of drug resistance in experimental populations of Candida albicans. Journal of Bacteriology, 183, 2971–2978.CrossRefPubMedGoogle Scholar
  11. Fisher, N., Brown, A. C., Sexton, G., Cook, A., Windass, J., & Meunier, B. (2004). Modeling the Qo site of crop pathogens in Saccharomyces cerevisiae cytochrome b. European Journal of Biochemistry, 271, 2264–2271. doi: 10.1111/j.1432-1033.2004.04169.x.CrossRefPubMedGoogle Scholar
  12. Furuya, S., Suzuki, S., Kobayashi, H., Saito, S., & Takayanagi, T. (2009). Rapid method for detecting resistance to QoI fungicides in Plasmopara viticola populations. Pest Management Science, 65, 840–843.CrossRefPubMedGoogle Scholar
  13. Galet, P. (1977). Mildiou. In P. Galet (Ed.), Les maladies et les parasites de la vigne (pp. 89–222). Montpellier: Paysan du midi.Google Scholar
  14. Genet, J.-L., Steva, H., Vincent, O., & Cazenave, C. (1997). A method for measuring the level of sensitivity of Plasmopara viticola populations to cymoxanil. EPPO bulletin, 27, 217–225.CrossRefGoogle Scholar
  15. Genet, J.-L., Jaworska, G., & Deparis, F. (2006). Effect of dose rate and mixture of fungicides on selection for QoI resistance in populations of Plasmopara viticola. Pest Management Science, 62, 188–194. doi: 10-1002/ps.1146.CrossRefPubMedGoogle Scholar
  16. Gisi, U., Sierotzki, H., Cook, H., & McCaffery, A. (2002). Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science, 58, 859–867.CrossRefPubMedGoogle Scholar
  17. Grasso, V., Palermo, S., Sierotzki, H., Garibaldi, A., & Gisi, U. (2006). Cytochrome b structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. Pest Management Science, 62, 465–472.CrossRefPubMedGoogle Scholar
  18. Heaney, S. P., Hall, A. A., Davies, S. A., & Olaya G. (2000). Resistance to fungicides in the QoI-STAR cross-resistance group: current perspectives. In Proc. Brighton Conf. Protec Conf. Pest and diseases (pp. 755–764). Farham: BCPC.Google Scholar
  19. Hu, J. H., Hong, C. X., Stromberg, E. L., & Moorman, G. W. (2008). Mefenoxam sensitivity and fitness analysis of Phytophthora nicotianae isolates from nurseries in Virginia, USA. Plant Pathology, 57, 728–736. doi: 10.111/j.1365-3059.2008.01831x.CrossRefGoogle Scholar
  20. Jordan, D. B., Livingston, R. S., Bisaha, J. J., Duncan, K. E., Pember, S. O., Picollelli, M. A., et al. (1999). Mode of action of famoxadone. Pesticide Science, 55, 105–108.CrossRefGoogle Scholar
  21. Kadish, D., & Cohen, Y. (1988). Competition between metalaxyl-sensitive and metalaxyl-resistant isolates of Phytophthora infestans in the absence of metalaxyl. Plant Pathology, 37, 558–564.CrossRefGoogle Scholar
  22. Magnien, C., Micoud, A., Glain, M., & Remuson, F. (2003). QoI resistance of downy mildew-monitoring and tests 2002. Paper presented at the 7th Int. Conf. on Pest and Diseases 2003, 8 pages. AFPP Eds, CD-Rom.Google Scholar
  23. Montarry, J., Glais, R., Corbiere, R., & Andrivon, D. (2008). Adaptation to the most abundant host genotype in an agricultural plant-pathogen system-potato late blight. Journal of Evolution Biology, 21, 1397–1407. doi: 10.1111/j.1420-9101-2008.01557.x.CrossRefGoogle Scholar
  24. Piganeau, B., & Clerjeau, M. (1985). Influence différentielle de la température sur la germination de sporocyste et la sporulation des souches de Plasmopara viticola sensible et résistantes aux phénylamides. In Fungicides for Crop Protection. BCPC monograph, 31, 327–330.Google Scholar
  25. Pringle, A., & Taylor, J. W. (2002). The fitness of filamentous fungi. Trends in Microbiology, 10, 474–481.CrossRefPubMedGoogle Scholar
  26. Rosenberg, S. M. (2001). Evolving responsively: adaptive mutation. Nature Review Genetic, 2, 504–515.CrossRefGoogle Scholar
  27. Sierotzki, H., Kraus, N., Assemat, P., Stanger, C., Cleere, C., Windass, J., et al. (2005). Evolution of resistance to QoI fungicides in Plasmopara viticola populations in Europe. In H. W. Dehne, U. Gisi, K. H. Kuck, P. E. Russell, & H. Lyr (Eds.), Modern fungicides and Antifungal compounds IV (pp. 73–80). Hampshire: BCPC.Google Scholar
  28. Sierotzki, H., Kraus, N., Pepin, S., Ferandes, N., & Gisi, H. (2008). Dynamics of QoI resistance in Plasmopara viticola. In H. W. Dehne, U. Gisi, K. H. Kuck, P. E. Russell, & H. Lyr (Eds.), Modern fungicides and antifungal compounds V (pp. 151–157). Brauschweig: DPG Selbstverlag.Google Scholar
  29. Sirven, C., & Beffa, R. (2003). Resistance to fenamidone: monitoring by real-time quantitative PCR on Plasmopara viticola. Pflanzenschutz-Nachrichten Bayer, 56, 523–5332.Google Scholar
  30. Toffolatti, S. T., Serrati, L., Sierotzki, H., Gisi, U., & Vercesi, A. (2007). Assessment of QoI resistance in Plasmopara viticola oospores. Pest Management Science, 63, 194–201.CrossRefPubMedGoogle Scholar
  31. Tooley, P. W., Sweigard, J. A., & Fry, W. E. (1986). Fitness and virulence of Phytophthora infestans from sexual and asexual populations. Phytopathology, 76, 1209–1212.CrossRefGoogle Scholar
  32. Vanderplank, J. E. (1982). Host-pathogen Interactions in plant disease (p. 27). New-York: Academic.Google Scholar
  33. Wong, F. P., & Wilcox, W. F. (2000). Distribution of baseline sensitivities to azoxystrobin among isolates of Plasmopara viticola. Plant disease, 84, 275–281.CrossRefGoogle Scholar
  34. Zolan, M. E., & Pukkila, P. J. (1986). Inheritance of DNA methylation in Coprinus cinereus. Molecular Cell Biology, 6, 195–200.Google Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Marie-France Corio-Costet
    • 1
    Email author
  • Marie-Cécile Dufour
    • 1
  • Jérémy Cigna
    • 1
  • Pierre Abadie
    • 2
  • Wei-Jen Chen
    • 3
  1. 1.UMR Santé Végétale, 1065, ISVV, IFR 103INRAVillenave d’OrnonFrance
  2. 2.UMR 1202 BIOGeCo, Laboratoire de génétique des arbres forestiersINRACestasFrance
  3. 3.Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations