European Journal of Plant Pathology

, Volume 129, Issue 2, pp 281–301 | Cite as

Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH)

  • Guillaume Legay
  • Elaheh Marouf
  • Dave Berger
  • Jean-Marc Neuhaus
  • Brigitte Mauch-ManiEmail author
  • Ana Slaughter


Grapevine (Vitis vinifera) is the most widely cultivated and economically important fruit crop, but is susceptible to a large number of diseases. Downy mildew, caused by the obligate biotrophic oomycete pathogen Plasmopara viticola, is a common disease present in all regions where vines are cultivated. We used suppression subtractive hybridization (SSH) to generate two cDNA libraries enriched for transcripts induced and repressed, respectively, in the susceptible grapevine cultivar Chasselas 24 h after inoculation with P. viticola. Differential screening on glass slide microarrays yielded over 800 putative genes that were up-regulated in response to P. viticola infection and over 200 that were down-regulated. One hundred and ninety four of these, were sequenced, identified and functionally categorised. Transcript abundance of twelve genes over a 48 h time course was examined by reverse transcriptase quantitative real-time PCR (RT-qPCR). Ten of these genes were induced/enhanced by P. viticola challenge, confirming the results of the SSH. The vast majority of the genes identified are related to defence. Interestingly, many genes involved in photosynthesis were down-regulated.


Compatible interaction Reverse transcriptase quantitative real-time PCR Plasmopara viticola Suppression subtractive hybridization Vitis vinifera 



This project was funded by the National Centre of Competence in Research (NCCR) Plant Survival, a research programme of the Swiss National Science Foundation. We thank Mrs. M. Waldner (Syngenta, Stein, Switzerland) for the grapevine seedlings and Dr J. Weber (Lausanne DNA Array Facility, University of Lausanne) for the assistance in the making of the SSH slides for the microarray screening.


  1. Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao, H., et al. (1991). Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 252, 1651–1656.CrossRefPubMedGoogle Scholar
  2. Allegre, M., Daire, X., Heloir, M. C., Trouvelot, S., Mercier, L., Adrian, M., et al. (2007). Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. The New Phytologist, 173, 832–840.CrossRefPubMedGoogle Scholar
  3. Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bezier, A., Lambert, B., et al. (2003). Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions, 16, 1118–1128.CrossRefPubMedGoogle Scholar
  4. Berger, D. K., Crampton, B. G., Hein, I., & Vos, W. (2007). Screening of cDNA libraries on glass slide microarrays. Methods in Molecular Biology, 382, 177–203.CrossRefPubMedGoogle Scholar
  5. Bernier, F., & Berna, A. (2001). Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly? Plant Physiology and Biochemistry, 39, 545–554.CrossRefGoogle Scholar
  6. Birch, P. R. J., Avrova, A. O., Duncan, J. M., Lyon, G. D., & Toth, R. L. (1999). Isolation of potato genes that are induced during an early stage of the hypersensitive response to Phytophthora infestans. Molecular Plant-Microbe Interactions, 12, 356–361.CrossRefGoogle Scholar
  7. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D. H., Johnson, D., et al. (2000). Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology, 18, 630–634.CrossRefPubMedGoogle Scholar
  8. Busam, G., Kassemeyer, H. H., & Matern, U. (1997). Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiology, 115, 1029–1038.CrossRefPubMedGoogle Scholar
  9. Butt, A., Mousley, C., Morris, K., Beynon, J., Can, C., Holub, E., et al. (1998). Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. The Plant Journal, 16, 209–221.CrossRefPubMedGoogle Scholar
  10. Choi, D., Kim, H. M., Yun, H. K., Park, J. A., Kim, W. T., & Bok, S. H. (1996). Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiology, 112, 353–359.CrossRefPubMedGoogle Scholar
  11. Chong, J., Le Henanff, G., Bertsch, C., & Walter, B. (2008). Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. Plant Physiology and Biochemistry, 46, 469–481.CrossRefPubMedGoogle Scholar
  12. Christensen, A. B., Cho, B. H., Naesby, M., Gregersen, P. L., Brandt, J., Madriz-Ordenana, K., et al. (2002). The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology, 3, 135–144.CrossRefPubMedGoogle Scholar
  13. Coetzer, N., Gazendam, I., Oelofse, D., & Berger, D. K. (2010). SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea. Plant Methods, 6, 10.CrossRefPubMedGoogle Scholar
  14. Dai, G. H., Andary, C., Mondolot-Cosson, L., & Boubals, D. (1995). Histochemical studies on the interaction between three species of grapevine Vitis vinifera, V. rupestris and V.rotundifolia and the downy fungus, Plasmopara viticola. Physiological and Molecular Plant Pathology, 46, 177–188.CrossRefGoogle Scholar
  15. Dauch, A. L., & Jabaji-Hare, S. H. (2006). Metallothionein and bZIP Transcription Factor Genes from Velvetleaf and Their Differential Expression Following Colletotrichum coccodes Infection. Phytopathology, 96, 1116–1123.CrossRefPubMedGoogle Scholar
  16. Degenhardt, J., Al-Masri, A. N., Kurkcuoglu, S., Szankowski, I., & Gau, A. E. (2005). Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Molecular Genetics and Genomics, 273, 326–335.CrossRefPubMedGoogle Scholar
  17. Derckel, J. P., Baillieul, F., Manteau, S., Audran, J. C., Haye, B., Lambert, B., et al. (1999). Differential Induction of Grapevine Defenses by Two Strains of Botrytis cinerea. Phytopathology, 89, 197–203.CrossRefPubMedGoogle Scholar
  18. Diez-Navajas, A. M., Wiedemann-Merdinoglu, S., Greif, C., & Merdinoglu, D. (2008). Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level. Phytopathology, 98, 776–780.CrossRefPubMedGoogle Scholar
  19. Fung, R. W., Gonzalo, M., Fekete, C., Kovacs, L. G., He, Y., Marsh, E., et al. (2008). Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiology, 146, 236–249.CrossRefPubMedGoogle Scholar
  20. Gindro, K., Pezet, R., & Viret, O. (2003). Histological study of the responses of two Vitis vinifera cultivars (resistant and susceptible) to Plasmopara viticola infections. Plant Physiology and Biochemistry, 41, 846–853.CrossRefGoogle Scholar
  21. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.CrossRefPubMedGoogle Scholar
  22. Godfrey, D., Able, A. J., & Dry, I. B. (2007). Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? Molecular Plant-Microbe Interactions, 20, 1112–1125.CrossRefPubMedGoogle Scholar
  23. Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., et al. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell, 8, 629–643.CrossRefPubMedGoogle Scholar
  24. Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M., & Mauch-Mani, B. (2005). beta-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 18, 819–829.CrossRefPubMedGoogle Scholar
  25. Heath, M. C. (2000). Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology, 3, 315–319.CrossRefPubMedGoogle Scholar
  26. Iandolino, A. B., Goes da Silva, F., Lim, H., Choi, H., Williams, L. E., & Cook, D. R. (2004). High-quality RNA, cDNA, and dervided EST libraries from grapevine (Vitis vinifera L.). Plant Molecular Biology Reporter, 22, 269–278.CrossRefGoogle Scholar
  27. Jantasuriyarat, C., Gowda, M., Haller, K., Hatfield, J., Lu, G., Stahlberg, E., et al. (2005). Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiology, 138, 105–115.CrossRefPubMedGoogle Scholar
  28. Keogh, R. C., Deverall, B. J., & McLeod, S. (1980). Comparison of histological and physiological responses to Phakoopsora pachyrhizi in resistant and susceptible soybean. Transactions of the British Mycological Society, 74, 328–333.CrossRefGoogle Scholar
  29. Kobae, Y., Sekino, T., Yoshioka, H., Nakagawa, T., Martinoia, E., & Maeshima, M. (2006). Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant & Cell Physiology, 47, 309–318.CrossRefGoogle Scholar
  30. Kortekamp, A. (2005). Growth, occurrence and development of septa in Plasmopara viticola and other members of the Peronosporaceae using light- and epifluorescence-microscopy. Mycological Research, 109, 640–648.CrossRefPubMedGoogle Scholar
  31. Kortekamp, A. (2006). Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiology and Biochemistry, 44, 58–67.CrossRefPubMedGoogle Scholar
  32. Kortekamp, A., & Zyprian, E. (2003). Characterization of Plasmopara-resistance in grapevine using in vitro plants. Journal of Plant Physiology, 160, 1393–1400.CrossRefPubMedGoogle Scholar
  33. Liu, J. J., & Ekramoddoullah, A. K. M. (2006). The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68, 3–13.CrossRefGoogle Scholar
  34. Lo, S. C., Hipskind, J. D., & Nicholson, R. L. (1999). cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum. Molecular Plant-Microbe Interactions, 12, 479–489.CrossRefPubMedGoogle Scholar
  35. Lu, G., Jantasuriyarat, C., Zhou, B., & Wang, G. L. (2004). Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. Theoretical and Applied Genetics, 108, 525–534.CrossRefPubMedGoogle Scholar
  36. Mauch, F., Mauch-Mani, B., & Boller, T. (1988). Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combinations of chitinase and beta-1, 3-glucanase. Plant Physiology, 87, 936–942.CrossRefGoogle Scholar
  37. McGee, J. D., Hamer, J. E., & Hodges, T. K. (2001). Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Molecular Plant-Microbe Interactions, 14, 877–886.CrossRefPubMedGoogle Scholar
  38. Mendgen, K., & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 7, 352–356.CrossRefPubMedGoogle Scholar
  39. Monteiro, S., Barakat, M., Picarra-Pereira, M. A., Teixeira, A. R., & Ferreira, R. B. (2003). Osmotin and thaumatin from grape: a putative general defense mechanism against pathogenic fungi. Phytopathology, 93, 1505–1512.CrossRefPubMedGoogle Scholar
  40. Moy, P., Qutob, D., Chapman, B. P., Atkinson, I., & Gijzen, M. (2004). Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Molecular Plant-Microbe Interactions, 17, 1051–1062.CrossRefPubMedGoogle Scholar
  41. Musetti, R., Marabottini, R., Badiani, M., Martini, M., di Toppi, L. S., Borselli, S., et al. (2007). On the role of H2O2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence doree disease. Functional Plant Biology, 34, 750–758.CrossRefGoogle Scholar
  42. Okushima, Y., Koizumi, N., Kusano, T., & Sano, H. (2000). Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Molecular Biology, 42, 479–488.CrossRefPubMedGoogle Scholar
  43. Panstruga, R. (2003). Establishing compatibility between plants and obligate biotrophic pathogens. Current Opinion in Plant Biology, 6, 320–326.CrossRefPubMedGoogle Scholar
  44. Pezet, R., Gindro, K., Viret, O., & Richter, H. (2004). Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis, 43, 145–148.Google Scholar
  45. Pina, A., & Errea, P. (2008). Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. Journal of Plant Physiology, 165, 705–714.CrossRefPubMedGoogle Scholar
  46. Polesani, M., Bortesi, L., Ferrarini, A., Zamboni, A., Fasoli, M., Zadra, C., et al. (2010). General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics, 11, 117.CrossRefPubMedGoogle Scholar
  47. Polesani, M., Desario, F., Ferrarini, A., Zamboni, A., Pezzotti, M., Kortekamp, A., et al. (2008). cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genomics, 9, 142.CrossRefPubMedGoogle Scholar
  48. Ponchet, M., Panabieres, F., Milat, M. L., Mikes, V., Montillet, J. L., Suty, L., et al. (1999). Are elicitins cryptograms in plant-Oomycete communications? Cellular and Molecular Life Sciences, 56, 1020–1047.CrossRefPubMedGoogle Scholar
  49. Restrepo, S., Myers, K. L., del Pozo, O., Martin, G. B., Hart, A. L., Buell, C. R., et al. (2005). Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant-Microbe Interactions, 18, 913–922.CrossRefPubMedGoogle Scholar
  50. Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., et al. (2004). The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 32, 5539–5545.CrossRefPubMedGoogle Scholar
  51. Scheel, D. (1998). Resistance response physiology and signal transduction. Current Opinion in Plant Biology, 1, 305–310.CrossRefPubMedGoogle Scholar
  52. Sewalt, V. J. H., Ni, W. T., Blount, J. W., Jung, H. G., Masoud, S. A., Howles, P. A., et al. (1997). Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiology, 115, 41–50.PubMedGoogle Scholar
  53. Smalle, J., & Vierstra, R. D. (2004). The ubiquitin 26 S proteasome proteolytic pathway. Annual Review of Plant Biology, 55, 555–590.CrossRefPubMedGoogle Scholar
  54. Stukkens, Y., Bultreys, A., Grec, S., Trombik, T., Vanham, D., & Boutry, M. (2005). NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiology, 139, 341–352.CrossRefPubMedGoogle Scholar
  55. Trouvelot, S., Varnier, A. L., Allegre, M., Mercier, L., Baillieul, F., Arnould, C., et al. (2008). A beta-1, 3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death. Molecular Plant-Microbe Interactions, 21, 232–243.CrossRefPubMedGoogle Scholar
  56. Unger, S., Buche, C., Boso, S., & Kassemeyer, H. H. (2007). The Course of Colonization of Two Different Vitis Genotypes by Plasmopara viticola Indicates Compatible and Incompatible Host-Pathogen Interactions. Phytopathology, 97, 780–786.CrossRefPubMedGoogle Scholar
  57. Van den Berg, N., Berger, D. K., Hein, I., Birch, P., Wingfield, M. J., & Viljoen, A. (2007). Tolerance in banana to Fusarium wilt is associated with early up-regulation of cell wall-strengthening genes in the roots. Molecular Plant Pathology, 8, 333–341.CrossRefGoogle Scholar
  58. Van den Berg, N., Crampton, B. G., Hein, I., Birch, P., & Berger, D. K. (2004). High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis. Biotechniques, 37, 818–824.PubMedGoogle Scholar
  59. van Loon, L. C., Rep, M., & Pieterse, C. M. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.CrossRefPubMedGoogle Scholar
  60. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 7.CrossRefGoogle Scholar
  61. Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Serial analysis of gene expression. Science, 270, 484–487.CrossRefPubMedGoogle Scholar
  62. Vergne, E., Ballini, E., Marques, S., Sidi Mammar, B., Droc, G., Gaillard, S., et al. (2007). Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. The New Phytologist, 174, 159–171.CrossRefPubMedGoogle Scholar
  63. Werner, S., Steiner, U., Becher, R., Kortekamp, A., Zyprian, E., & Deising, H. B. (2002). Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola. FEMS Microbiology Letters, 208, 169–173.CrossRefPubMedGoogle Scholar
  64. Wielgoss, A., & Kortekamp, A. (2006). Comparison of PR1 expression in grapevine cultures after inoculation with a host- and a non-host pathogen. Vitis, 45, 9–13.Google Scholar
  65. Wong, H. L., Sakamoto, T., Kawasaki, T., Umemura, K., & Shimamoto, K. (2004). Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiology, 135, 1447–1456.CrossRefPubMedGoogle Scholar
  66. Yazaki, K. (2006). ABC transporters involved in the transport of plant secondary metabolites. FEBS Letters, 580, 1183–1191.CrossRefPubMedGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Guillaume Legay
    • 1
  • Elaheh Marouf
    • 1
  • Dave Berger
    • 2
  • Jean-Marc Neuhaus
    • 1
  • Brigitte Mauch-Mani
    • 1
    Email author
  • Ana Slaughter
    • 1
  1. 1.Laboratory of Molecular and Cellular BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.Department of Plant Science, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations