European Journal of Plant Pathology

, Volume 128, Issue 1, pp 101–111

Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany

  • Andreas Goertz
  • Sebastian Zuehlke
  • Michael Spiteller
  • Ulrike Steiner
  • Heinz W. Dehne
  • Cees Waalwijk
  • Ineke de Vries
  • Erich C. Oerke


High year-to-year variability in the incidence of Fusarium spp. and mycotoxin contamination was observed in a two-year survey investigating the impact of maize ear rot in 84 field samples from Germany. Fusarium verticillioides, F. graminearum, and F. proliferatum were the predominant species infecting maize kernels in 2006, whereas in 2007 the most frequently isolated species were F. graminearum, F. cerealis and F. subglutinans. Fourteen Fusarium-related mycotoxins were detected as contaminants of maize kernels analyzed by a multi-mycotoxin determination method. In 2006, a growth season characterized by high temperature and low rainfall during anthesis and early grain filling, 75% of the maize samples were contaminated with deoxynivalenol, 34% with fumonisins and 27% with zearalenone. In 2007, characterized by moderate temperatures and frequent rainfall during the entire growth season, none of the 40 maize samples had quantifiable levels of fumonisins while deoxynivalenol and zearalenone were detected in 90% and 93% of the fields, respectively. In addition, 3-acetyldeoxynivalenol, 15-acetyldeoxnivalenol, moniliformin, beauvericin, nivalenol and enniatin B were detected as common contaminants produced in both growing seasons. The results demonstrate a significant mycotoxin contamination associated with maize ear rots in Germany and indicate, with regard to anticipated climate change, that fumonisins-producing species already present in German maize production may become more important.


Deoxynivalenol Ear rot F. verticillioides F. graminearum Fumonisin Zearalenone 



translation elongation factor 1-alpha gene








  1. Abildgren, M. P., Lund, F., Thrane, U., & Elmholt, S. (1987). Czapek-Dox agar containing iprodione and dichloran as a selective medium for the isolation of Fusarium species. Letters of Applied Microbiology, 5, 83–86.CrossRefGoogle Scholar
  2. Adejumo, T. O., Hettwer, H., & Karlovsky, P. (2007). Survey of maize from south western Nigeria for zearalenone, α- and β-zearalenols, fumonisin B1 and enniatins produced by Fusarium species. Food Additives and Contaminants, 24, 993–1000.CrossRefPubMedGoogle Scholar
  3. Chelkowski, J., Ritieni, A., Wisniewska, H., Mulé, G., & Logrieco, A. (2007). Occurrence of toxic hexadepsipeptides in preharvest maize ear rot infected by Fusarium poae in Poland. Journal of Phytopathology, 155, 8–12.CrossRefGoogle Scholar
  4. Demeke, T., Clear, R. M., Patrick, S. K., & Gaba, D. (2005). Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. International Journal of Food Microbiology, 103, 271–284.CrossRefPubMedGoogle Scholar
  5. Desjardins, A. E. (2006). Fusarium Mycotoxins: Chemistry, genetics, and biology. St. Paul: American Phytopathological Society Press.Google Scholar
  6. EU Commission (2007). Commission Regulation (EC) No 1126/2007 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Official Journal of the European Union, L255/14-L255/17.Google Scholar
  7. Haschek, W. M., Gumprecht, L. A., Smith, G., Tumbleson, M. E., & Constable, P. D. (2001). Fumonisin toxicosis in swine: an overview of porcine pulmonary edema and current perspectives. Environmental Health Perspectives, 109, 251–257.CrossRefPubMedGoogle Scholar
  8. Herebian, D., Zühlke, S., Lamshöft, M., & Spiteller, M. (2009). Multi-mycotoxin analysis in complex biological matrices using liquid chromatography-electrospray ionization-mass spectrometry: experimental study using triple stage quadrupole and linear ion trap-Orbitrap. Journal of Separation Science, 32, 939–948.CrossRefPubMedGoogle Scholar
  9. Hummel, H. E., Deuker, A., Eberhard, D., Glas, M., & Leithold, G. (2008). The western corn rootworm (Diabrotica virgifera virgifera) and its first appearance in Germany 2007. Communication in Agricultural and Applied Biological Sciences, 73, 481–491.Google Scholar
  10. Jestoi, M. (2008). Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins and moniliformin—a review. Critical Revues in Food Science and Nutrition, 48, 21–49.CrossRefGoogle Scholar
  11. Jurado, M., Vázquez, C., Callejas, C., & González-Jaén, M. T. (2006). Occurrence and variability of mycotoxigenic Fusarium species associated to wheat and maize in South West of Spain. Mycotoxin Research, 22, 87–91.CrossRefGoogle Scholar
  12. Kedera, C. J., Plattner, R. D., & Desjardins, A. E. (1999). Incidence of Fusarium spp. and levels of Fumonisin B1 in Western Kenya. Applied and Environmental Microbiology, 64, 41–44.Google Scholar
  13. Krska, R., Baumgartner, S., & Josephs, R. (2001). The state-of-the-art in the analysis of type-A and –B trichothecene mycotoxins in cereals. Fresenius Journal of Analytical Chemistry, 371, 285–299.CrossRefPubMedGoogle Scholar
  14. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames: Blackwell Publishing.CrossRefGoogle Scholar
  15. Lew, H., Adler, A., & Edinger, W. (1991). Moniliformin and the European corn borer (Ostrinia nubilalis). Mycotoxin Research, 7A, 71–76.Google Scholar
  16. Logrieco, A., Bottalico, A., Mulé, G., Moretti, A. & Perrone, G. (2003). Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops.European Journal of Plant Pathology, 109, 645–667.Google Scholar
  17. Logrieco, A., Moretti, A., Ritieni, A., Bottalico, A., & Corda, P. (1995). Occurrence and toxigenicity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins in Italy. Plant Disease, 79, 727–731.Google Scholar
  18. Logrieco, A., Mulé, G., Moretti, A., & Bottalico, A. (2002). Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. European Journal of Plant Pathology, 108, 597–609.CrossRefGoogle Scholar
  19. Marasas, W. F. O., Wehner, F. C., van Rensburg, S. J., & van Schalkwyk, D. J. (1981). Mycoflora of corn produced in human esophageal cancer areas in Transkei, southern Africa. Phytopathology, 71, 792–796.CrossRefGoogle Scholar
  20. Marasas, W. F. O., Miller, J. D., & Visconti, A. (2000). Fumonisin B1. Environmental Health Criteria, 219, 1–150.Google Scholar
  21. Marin, S., Magan, N., Belli, N., Ramos, A. J., Canela, R., & Sanchis, V. (1999). Two-dimensional profiles of fumonisin B1 production by Fusarium moniliforme and F. proliferatum in relation to environmental factors and potential for modelling toxin formation in maize grain. International Journal of Food Microbiology, 51, 159–167.CrossRefPubMedGoogle Scholar
  22. Mishra, P. K., Fox, R. T. V., & Culham, A. (2003). Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters, 218, 329–332.CrossRefPubMedGoogle Scholar
  23. Mulé, G., Susca, A., Stea, G., & Moretti, A. (2004a). Specific detection of the toxigenic species Fusarium proliferatum and Fusarium oxysporum from asparagus plants using primers based on calmodulin gene sequences. FEMS Microbiologyl Letters, 230, 235–240.CrossRefGoogle Scholar
  24. Mulé, G., Susca, A., Stea, G., & Moretti, A. (2004b). A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. European Journal of Plant Pathology, 110, 495–502.CrossRefGoogle Scholar
  25. Munkvold, G. P., & Desjardins, A. E. (1997). Fumonisins in maize—Can we reduce their occurrence? Plant Disease, 81, 556–565.CrossRefGoogle Scholar
  26. Munkvold, G. P., Hellmich, R. L., & Showers, W. B. (1997). Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology, 87, 1071–1077.CrossRefPubMedGoogle Scholar
  27. Munkvold, G. P. (2003). Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 109, 705–713.CrossRefGoogle Scholar
  28. Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. K., Parry, D. W., et al. (1998). Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53, 17–37.CrossRefGoogle Scholar
  29. O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95, 2044–2049.CrossRefPubMedGoogle Scholar
  30. Parry, D. W., & Nicholson, P. (1996). Development of a PCR assay to detect Fusarium poae in wheat. Plant Pathology, 45, 383–391.CrossRefGoogle Scholar
  31. Patino, B., Mirete, S., González-Jaén, M. T., Mulé, G., Rodríguez, M. T., & Vázquez, C. (2004). Research Note: PCR detection assay of fumonisin-producing Fusarium verticillioides strains. Journal of Food Protection, 67, 1278–1283.PubMedGoogle Scholar
  32. Placinta, C. M., D’Mello, J. P. F., & MacDonald, A. M. C. (1999). A review of world contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal Feed Science and Technology, 78, 21–37.CrossRefGoogle Scholar
  33. Reid, L. M., Nicol, R. W., Ouellet, T., Savard, M., Miller, J. D., Young, J. C., et al. (1999). Interaction of Fusarium graminearum and F. moniliforme in maize ears: disease progress, fungal biomass and mycotoxin accumulation. Phytopathology, 89, 1028–1037.CrossRefPubMedGoogle Scholar
  34. Schmitz, G., Rothmeier, I., Greib, G., Ross-Nickoll, M., & Bartsch, D. (2002). Process and potential of the spreading of the European corn borer (Ostrinia nubilalis Hbn.) in Northwest Germany. Journal of Plant Diseases and Protection, 109, 624–629.Google Scholar
  35. Sun, G., Wang, S., Hu, X., Su, J., Huang, T., Yu, J., et al. (2007). Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Additives and Contaminants, 24, 181–185.CrossRefPubMedGoogle Scholar
  36. Sutton, J. C., Baliko, W., & Liu, H. J. (1980). Fungal colonization and zearalenone accumulation in maize ears injured by birds. Canadian Journal of Plant Science, 60, 453–461.CrossRefGoogle Scholar
  37. Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.Google Scholar
  38. Thiel, P. G., Shephard, G. S., Sydenham, E. W., Marasas, W. F. O., Nelson, P. E., & Wilson, T. M. (1991). Levels of fumonisin B1 and B2 in feeds associated with confirmed cases of equine leukoencephalomalacia. Journal of Agriculture and Food Chemistry, 39, 109–111.CrossRefGoogle Scholar
  39. Turner, A. S., Lees, A. K., Rezanoor, H. N., & Nicholson, P. (1998). Refinement of PCR-detection of Fusarium avenaceum and evidence from DNA marker studies for phonetic relatedness to Fusarium tricinctum. Plant Pathology, 47, 278–288.CrossRefGoogle Scholar
  40. Vigier, B., Reid, L. M., Seifert, K. A., Stewart, D. A., & Hamilton, R. I. (1997). Distribution and prediction of Fusarium species associated with maize in Ontario. Canadian Journal of Plant Pathology, 19, 60–65.Google Scholar
  41. Yoder, W. T., & Christianson, L. M. (1998). Species-specific primers resolve members of Fusarium section Fusarium: taxonomic status of the edible “Quorn” fungus reevaluated. Fungal Genetics and Biology, 23, 68–80.CrossRefPubMedGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Andreas Goertz
    • 1
  • Sebastian Zuehlke
    • 2
  • Michael Spiteller
    • 2
  • Ulrike Steiner
    • 1
  • Heinz W. Dehne
    • 1
  • Cees Waalwijk
    • 3
  • Ineke de Vries
    • 3
  • Erich C. Oerke
    • 1
  1. 1.Institute of Crop Science and Resource ConservationBonnGermany
  2. 2.Institute of Environmental ResearchDortmund University of TechnologyDortmundGermany
  3. 3.Plant Research International BVBiointeractions and Plant HealthAA WageningenThe Netherlands

Personalised recommendations