European Journal of Plant Pathology

, Volume 128, Issue 1, pp 81–89 | Cite as

Phylogenetic investigations in the downy mildew genus Bremia reveal several distinct lineages and a species with a presumably exceptional wide host range

  • Marco ThinesEmail author
  • Fabian Runge
  • Sabine Telle
  • Hermann Voglmayr


Bremia lactucae is one of the most devastating and widespread pathogens in lettuce production worldwide. Despite its economical importance, uncertainty prevails about the species delimitation in the genus Bremia. Commonly, Bremia is considered to be monotypic, containing only Bremia lactucae, while taxonomists have described additional species, and molecular phylogenetic studies have shown significant sequence divergence between accessions from different hosts. Here, we report that several previously described species are genetically highly distinct from Bremia lactucae parasitic to Lactuca sativa. These include Bremia lapsanae, Bremia sonchicola, and Bremia taraxaci. In addition to these host-specific species, a plurivorous species is revealed, which infects hosts from three different tribes in the Asteraceae subfamilies Asteroideae and Carduoideae. The broad host range of clade 1 is exceptional for downy mildews and only paralleled by Pseudoperonospora cubensis, which infects a broad range of Cucurbitaceae. The taxonomic status of Bremia cirsii and of Bremia centaureae remains unresolved, as the accessions from Cirsium and Centaurea, respectively, did not form a monophylum but were partly contained in the plurivorous clade 1. Bremia lactucae was found to be restricted to Lactuca sativa and Lactuca serriola. Thus, it can be assumed that Bremia infections on weeds apart from Lactuca species do not pose a significant risk for lettuce production. However, it is unlikely that breeding resistance genes from Lactuca serriola into Lactuca sativa will result in durable resistance of lettuce to downy mildew disease, because the current study provides additional evidence that Bremia accessions from both hosts form a population continuum.


Lettuce downy mildew Peronosporaceae Species concepts Molecular phylogenetics cox2 nrLSU Resistance 



The curator of the herbarium KR is gratefully acknowledged for sending a specimen of Bremia parasitic to Arctium, and Richard Michelmore for sending a specimen from Helichrysum. The present study was financially supported by the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts and by a grant from the German Science Foundation (DFG) awarded to MT.


  1. Angiosperm Phylogeny Group (A.P.G.). (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.CrossRefGoogle Scholar
  2. Choi, Y.-J., Hong, S.-B., & Shin, H.-D. (2005). A reconsideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data. Mycological Research, 109, 841–848. doi: 10.1017/S0953756205002534.CrossRefPubMedGoogle Scholar
  3. Choi, Y.-J., Hong, S.-B., & Shin, H.-D. (2006). Genetic diversity within the Albugo candida complex (Peronosporales, Oomycota) inferred from phylogenetic analysis of ITS rDNA and COX2 mt DNA sequences. Molecular Phylogenetics and Evolution, 40, 400–409. doi: 10.1016/j.ympev.2006.03.023.CrossRefPubMedGoogle Scholar
  4. Choi, Y.-J., Hong, S.-B., & Shin, H.-D. (2007a). Extreme size and sequence variation in the ITS rDNA of Bremia lactucae. Mycopathologia, 163, 91–95. doi: 10.1007/s11046-007-0092-7.CrossRefPubMedGoogle Scholar
  5. Choi, Y.-J., Shin, H.-D., Hong, S.-B., & Thines, M. (2007b). Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Diversity, 27, 11–34.Google Scholar
  6. Choi, Y.-J., Hong, S.-B., & Shin, H.-D. (2007c). Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycological Research, 111, 381–391. doi: 10.1016/j.mycres.2007.02.003.CrossRefPubMedGoogle Scholar
  7. Choi, Y.-J., Shin, H.-D., Ploch, S., & Thines, M. (2008). Evidence for uncharted biodiversity in the Albugo candida complex, with the description of a new species. Mycological Research, 112, 1327–1334. doi: 10.1016/j.mycres.2008.04.015.CrossRefPubMedGoogle Scholar
  8. Choi, Y.-J., Shin, H.-D., Hong, S.-B., & Thines, M. (2009a). The host range of Albugo candida extends from Brassicaceae through Cleomaceae to Capparaceae. Mycological Progress, 8, 329–335. doi: 10.1007/s11557-009-0604-6.CrossRefGoogle Scholar
  9. Choi, Y.-J., Shin, H.-D., & Thines, M. (2009b). Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycological Research, 113, 1340–1350.CrossRefGoogle Scholar
  10. Choi, Y.-J., Kiss, L., Vajna, L., & Shin, H.-D. (2009c). Characterization of a Plasmopara species on Ambrosia artemisiifolia, and notes on P. halstedii, based on morphology and multiple gene phylogenies. Mycological Research, 113, 1127–1136. doi: 10.1016/j.mycres.2009.07.010.CrossRefGoogle Scholar
  11. Funk, V. A., Bayer, R. J., Keeley, S., Chan, R., Watson, L., Gemeinholzer, B., et al. (2005). Everywhere but Antarctica: Using a supertree to understand the diversity and distribution of the Compositae. Biological Skripts, 55, 343–374.Google Scholar
  12. García-Blázquez, G., Göker, M., Voglmayr, H., Martín, M. P., Tellería, M. T., & Oberwinkler, F. (2008). Phylogeny of Peronospora, parasitic on Fabaceae, based on ITS sequences. Mycological Research, 112, 502–512. doi: 10.1016/j.mycres.2007.10.007.CrossRefPubMedGoogle Scholar
  13. Göker, M., Riethmüller, A., Voglmayr, H., Weiß, M., & Oberwinkler, F. (2004). Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycological Progress, 3, 83–94.CrossRefGoogle Scholar
  14. Göker, M., Voglmayr, H., García Blázquez, G., & Oberwinkler, F. (2009). Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycological Research, 113, 308–325. doi: 10.1016/j.mycres.2008.11.006.CrossRefPubMedGoogle Scholar
  15. Hudspeth, D. S. S., Nadler, S. A., & Hudspeth, M. E. S. (2000). A cox2 molecular phylogeny of the Peronosporomycetes. Mycologia, 92, 674–684.CrossRefGoogle Scholar
  16. Hudspeth, D. S. S., Stenger, D. C., & Hudspeth, M. E. S. (2003). A cox2 phylogenetic hypothesis for the downy mildews and white rusts. Fungal Diversity, 13, 47–57.Google Scholar
  17. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.CrossRefPubMedGoogle Scholar
  18. Katoh, K., Kuma, K., Toh, H., & Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511–518.CrossRefPubMedGoogle Scholar
  19. Komjáti, H., Walcz, I., Virányi, F., Zipper, R., Thines, M., & Spring, O. (2007). Characteristics of a Plasmopara angustiterminalis isolate from Xanthium strumarium. European Journal of Plant Pathology, 119, 421–428. doi: 10.1007/s10658-007-9178-9.CrossRefGoogle Scholar
  20. Lebeda, A. (2002). Occurrence and variation in virulence of Bremia lactucae in natural populations of Lactuca serriola. In P. T. N. Spencer Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 179–183). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  21. Lebeda, A., & Syrovátko, P. (1988). Specificity of Bremia lactucae isolates from Lactuca sativa and some Asteraceae plants. Acta Phytopathologica et Entomologica Hungaria, 23, 39–48.Google Scholar
  22. Lebeda, A., & Petrzelova, I. (2004). Variation and distribution of virulence phenotypes of Bremia lactucae in natural populations of Lactuca serriola. Plant Pathology, 53, 316–324.CrossRefGoogle Scholar
  23. Lebeda, A., Pink, D. A. C., & Astley, D. (2002). Aspects of the interactions between wild Lactuca spp. and related genera and lettuce downy mildew (Bremia lactucae). In P. T. N. Spencer Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 85–117). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  24. Lebeda, A., Petrželová, I., & Maryška, Z. (2008). Structure and variation in the wild-plant pathosystem: Lactuca serriola - Bremia lactucae. European Journal of Plant Pathology, 122, 127–146.CrossRefGoogle Scholar
  25. Moncalvo, J. M., Wang, H. H., & Hseu, R. S. (1995). Phylogenetic relationships in Ganoderma inferrred from the internal transcribed spacers and 25 S ribosomal DNA sequences. Mycologia, 87, 223–238.CrossRefGoogle Scholar
  26. Novotel’nova NS (1963) Obzor gribov Plasmopara, parazitiruyushchikh na slozhnotsvetnykh. In: Materialy vtorogo simpozyuma miko- i likhenoflore Pribaltijskikh respublik Vilnius (pp. 111–118). Vilnius: Institut Botaniki Akademij Litovskij SSRGoogle Scholar
  27. Regel, E. (1843). Beiträge zur Kenntnis einiger Blattpilze. Botanische Zeitung, 1, 665–667.Google Scholar
  28. Riethmüller, A., Voglmayr, H., Göker, M., Weiß, M., & Oberwinkler, F. (2002). Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia, 94, 834–849.CrossRefGoogle Scholar
  29. Skidmore, D. I., & Ingram, D. S. (1985). Conidial morphology and specialization of Bremia lactucae Regel (Peronosporaceae) on hosts in the family Compositae. Botanical Journal of the Linnean Society, 91, 503–522.CrossRefGoogle Scholar
  30. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. doi: 10.1093/bioinformatics/btl446.CrossRefPubMedGoogle Scholar
  31. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology, 57, 758–771. doi: 10.1080/10635150802429642.CrossRefPubMedGoogle Scholar
  32. Syrovátko, P., Lebeda, A., & Skalický, V. (1984). A morphological characteristic of Bremia lactucae asexual spores on different Compositae species. Temperate Downy Mildews Newsletter, 3, 16–17.Google Scholar
  33. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599. doi: 10.1093/molbev/msm092.CrossRefPubMedGoogle Scholar
  34. Telle, S., & Thines, M. (2008). Amplification of cox2 ( 620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS ONE, 3(10), e3584. doi: 10.1371/journal.pone.0003584.CrossRefPubMedGoogle Scholar
  35. Thiers B (2009) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Retrieved December 20, 2009, from
  36. Thines, M. (2007). Characterisation and phylogeny of repeated elements giving rise to exceptional length of ITS2 in several downy mildew genera (Peronosporaceae). Fungal Genetics and Biology, 44, 199–207. doi: 10.1016/j.fgb.2006.08.002.CrossRefPubMedGoogle Scholar
  37. Thines, M., Göker, M., Spring, O., & Oberwinkler, F. (2006). A revision of Bremia graminicola. Mycological Research, 110, 646–656.CrossRefPubMedGoogle Scholar
  38. Thines, M., Göker, M., Telle, S., Ryley, M., Mathur, K., Narayana, Y. D., et al. (2008). Phylogenetic relationships of graminicolous downy mildews based on cox2 sequence data. Mycological Research, 112, 345–351. doi: 10.1016/j.mycres.2007.10.010.CrossRefPubMedGoogle Scholar
  39. Thines, M., Telle, S., Ploch, S., & Runge, F. (2009a). Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycological Research, 113, 532–540.CrossRefGoogle Scholar
  40. Thines, M., Choi, Y.-J., Kemen, E., Ploch, S., Holub, E. B., Shin, H.-D., et al. (2009b). A new species of Albugo parasitic to Arabidopsis thaliana reveals new evolutionary patterns in white blister rusts (Albuginaceae). Persoonia, 22, 123–128.Google Scholar
  41. Voglmayr, H., & Riethmüller, A. (2006). Phylogenetic relationships of Albugo species (white blister rusts) based on LSU rDNA sequence and oospore data. Mycological Research, 110, 75–85. doi: 10.1016/j.mycres.2005.09.013.CrossRefPubMedGoogle Scholar
  42. Voglmayr, H., & Constantinescu, O. (2008). Revision and reclassification of three Plasmopara species based on morphological and molecular phylogenetic data. Mycological Research, 112, 487–501. doi: 10.1016/j.mycres.2007.10.009.CrossRefPubMedGoogle Scholar
  43. Voglmayr, H., Riethmüller, A., Göker, M., Weiß, M., & Oberwinkler, F. (2004). Phylogenetic relationships of Plasmopara, Bremia and other genera of downy mildews with pyriform haustoria based on Bayesian analysis of partial LSU rDNA sequence data. Mycological Research, 108, 1011–1024. doi: 10.1017/S0953756204000954.CrossRefPubMedGoogle Scholar
  44. Yerkes, W. D., & Shaw, C. G. (1959). Taxonomy of Peronospora species on Cruciferae and Chenopodiaceae. Phytopathology, 49, 499–507.Google Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Marco Thines
    • 1
    • 2
    Email author
  • Fabian Runge
    • 3
  • Sabine Telle
    • 2
  • Hermann Voglmayr
    • 4
  1. 1.Department of Biological SciencesJohann Wolfgang Goethe UniversityFrankfurt (Main)Germany
  2. 2.Biodiversity and Climate Research Centre (BiK-F)Frankfurt (Main)Germany
  3. 3.Institute of Botany 210, University of HohenheimStuttgartGermany
  4. 4.Department of Systematik and Evolutionary BotanyUniversity of ViennaWienAustria

Personalised recommendations