European Journal of Plant Pathology

, Volume 127, Issue 3, pp 427–436 | Cite as

Involvement of the β-cinnamomin elicitin in infection and colonisation of cork oak roots by Phytophthora cinnamomi

  • Marília Horta
  • Paula Caetano
  • Clara Medeira
  • Isabel Maia
  • Alfredo Cravador
Article

Abstract

The virulence of two wild type (PA45 and PA37) and two genetically modified (13C: hygromycin resistant; FATSS: hygromycin resistant and β-cin knock-down) Phytophthora cinnamomi strains towards cork oak (Quercus suber) was assessed via a quantitative evaluation of disease symptoms arising from a soil infestation assay, and by a histological analysis of root colonization. Comparison of virulence, as expressed by symptom severity, resulted in the following ranking: highly virulent (wild type strains), medium virulence (strain 13C) and weakly virulent (FATSS). Both transgenic strains were compromised in their virulence, as expressed by symptom severity, but strain 13C was much less affected than FATSS. Microscopic observation showed that the FATSS strain was unable to effectively invade the root, while 13C and the two wild type strains were all able to rapidly colonize the whole root, including the vascular tissue. These results strengthen the notion that elicitins are associated, either directly or indirectly, with the infection process of Phytophthora.

Keywords

Elicitin Pathogenicity Quercus 

References

  1. Bergot, M., Cloppet, E., Pérarnaud, V., Déque, M., Marcais, B., & Desprez-Loustau, M. L. (2004). Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Global Change Biology, 10, 1539–1552.CrossRefGoogle Scholar
  2. Brasier, C. M. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annales des Sciences Forestières, 53, 347–358.Google Scholar
  3. Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57, 792–808.CrossRefGoogle Scholar
  4. Brasier, C. M., Robredo, F., & Ferraz, J. F. P. (1993). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140–145.CrossRefGoogle Scholar
  5. Brummer, M., Arend, M., Fromm, J., Schlenzig, A., & Oβwald, W. F. (2002). Ultrastructural changes and immunocytochemical localization of the elicitin quercinin in Quercus robur L. roots infected with Phytophthora quercina. Physiological and Molecular Plant Pathology, 61, 109–120.CrossRefGoogle Scholar
  6. Caetano, P. (2007). Envolvimento de Phytophthora cinnamomi no declínio de Quercus suber e Q. rotundifolia: estudo da influência de factores bióticos e abióticos na progressão da doença. Possibilidades de controlo químico do declínio. Tese de Doutoramento (p 321) Universidade do Algarve.Google Scholar
  7. Cahill, D., Legge, N., Grant, B., & Weste, G. (1989). Cellular and histological changes induced by Phytophthora cinnamomi in a group of plant species ranging from fully susceptible to fully resistant. Phytopathology, 79, 417–424.CrossRefGoogle Scholar
  8. Coelho, A. C., Cravador, A., Bollen, A., Ferraz, J. F. P., Moreira, A. C., Fauconnier, A., et al. (1997). Highly specific and sensitive non-radioactive identification of Phytophthora cinnamomi. Mycological Research, 101, 1499–1507.CrossRefGoogle Scholar
  9. Colas, V., Conrod, S., Venard, P., Keller, H., Ricci, P., & Panabiéres, F. (2001). Elicitin genes expressed in vitro by certain tobacco isolates of Phytophthora parasitica are down regulated during compatible interactions. Molecular Plant-Microbe Interactions, 14, 326–335.CrossRefPubMedGoogle Scholar
  10. Correia, T. P. (1993). Threatened landscape in Alentejo, Portugal: the “montado” and other “agro-silvo-pastoral” systems. Landscape and Urban Planning, 24, 43–48.CrossRefGoogle Scholar
  11. Correia, A. V., & Oliveira, A. C. (2002). Principais espécies florestais com interesse para Portugal, Zonas de Influência Mediterrânica. Estudos e Informação nº 318, 2ª Ed., Direcção Geral das Florestas, Lisboa.Google Scholar
  12. Duclos, J., Fauconnier, A., Coelho, A. C., Bollen, A., Cravador, A., & Godfroid, E. (1998). Identification of an elicitin gene cluster in Phytophthora cinnamomi. DNA Sequence—Journal of Sequencing and Mapping, 9, 231–237.Google Scholar
  13. Érsek, T., Schoelz, J. E., & English, J. T. (1994). Characterization of selected drug resistant mutants of Phytophthora capsici P. parasitica and P. citrophthora. Acta Phytopathologica et Entomologica Hungarica, 29, 215–229.Google Scholar
  14. Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St Paul: American Phytopathological Society.Google Scholar
  15. Gaulin, E., Jauneau, A., Villalba, F., Rickauer, M., Esquerré-Tugayé, M.-T., & Bottin, A. (2002). The CBEL glycoprotein of Phytophthora parasitica var. Nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. Journal of Cell Science, 115, 4565–4575.CrossRefPubMedGoogle Scholar
  16. Hardham, A. (2005). Pathogen profile: Phytophthora cinnamomi. Molecular Plant Pathology, 6, 589–604.CrossRefGoogle Scholar
  17. Horta, M., Sousa, N., Coelho, A. C., Neves, D., & Cravador, A. (2008). In vitro and in vivo quantification of elicitin expression in Phytophthora cinnamomi. Physiological and Molecular Plant Pathology, 73, 48–57.CrossRefGoogle Scholar
  18. Jeffers, N. S., & Martin, J. B. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease, 70, 1038–1043.CrossRefGoogle Scholar
  19. Jiang, R. H. Y., Tyler, B. M., Whisson, S. C., Hardham, A. R., & Govers, F. (2006). Ancient origin of elicitin gene clusters in Phytophthora genomes. Molecular Biology and Evolution, 23, 338–351.CrossRefPubMedGoogle Scholar
  20. Joffre, R., Rambal, S., & Ratte, P. J. (1999). The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agroforestry Systems, 45, 57–79.CrossRefGoogle Scholar
  21. Jung, T. (2009). Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. Forest Pathology, 38, 73–94.CrossRefGoogle Scholar
  22. Kamoun, S. (2007). Groovy times: filamentous pathogen effectors revealed. Current Opinion in Plant Biology, 10, 358–365.CrossRefPubMedGoogle Scholar
  23. Kamoun, S., Van West, P., De Jong, A. J., De Groot, K. E., Vleeshouwers, V. G. A. A., & Govers, F. (1997). A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Molecular Plant-Microbe Interactions, 10, 13–20.CrossRefPubMedGoogle Scholar
  24. Kamoun, S., van West, P., Vleeshouwers, V. G., de Groot, K. E., & Govers, F. (1998). Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell, 10, 1413–1425.CrossRefPubMedGoogle Scholar
  25. Lherminier, J., Benhamou, N., Larrue, J., Milat, M.-L. Milat, Boudon-Padieu, E., Nicole, M., et al. (2003). Cytological characterization of elicitin-induced protection in tobacco plants infected by Phytophthora parasitica or phytoplasma. Phytopathology, 93, 1308–1319.CrossRefPubMedGoogle Scholar
  26. Moreira-Marcelino, A. C. M. (2001). Aspectos da interacção entre Phytophthora cinnamomi e a doença do declínio em Q. suber e Q. rotundifolia. Tese de Doutoramento (p 279) Universidade do Algarve.Google Scholar
  27. Picard, K., Ponchet, M., Blein, J. P., Rey, P., Tirilly, Y., & Benhamou, N. (2000). Oligandrin, a proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiology, 124, 379–395.CrossRefPubMedGoogle Scholar
  28. Pires, N., Maia, I., Moreira, A., & Medeira, C. (2008). Early stages of infection of cork and holm oak trees by Phytophthora cinnamomi. In J. Vázquez & H. Pereira (Eds.), Suberwood: New challenges for the integration of cork oak forests and products (pp. 275–282). Spain: Universidad de Huelva.Google Scholar
  29. Ponchet, M., Panabières, F., Milat, M.-L., Mikes, V., Montillet, J.-L., Suty, L., et al. (1999). Are elicitins cryptograms in the plant—Oomycete communications? Cellular and Molecular Life Sciences, 56, 1020–1047.CrossRefPubMedGoogle Scholar
  30. Roland, J. C., & Vian, B. (1991). General preparation and staining of thin sections. In J. L. Hall & C. Hawes (Eds.), Electron microscopy of plant cells (pp. 1–66). London: Academic.Google Scholar
  31. Sánchez, M. E., Caetano, P., Ferraz, J., & Trapero, A. (2002). Phytophthora disease of Quercus ilex in south-western Spain. Forest Pathology, 32, 5–18.CrossRefGoogle Scholar
  32. SPSS for Windows, Rel. 11.0.1. 2001. Chicago: SPSS Inc.Google Scholar
  33. Steel, G., & Torrie, J. (1985). Bioestadística: Principios y Procedimientos. Bogotá: MacGraw-Hill.Google Scholar
  34. Widmer, T. L., Graham, J. H., & Mitchell, D. J. (1998). Histological comparison of fibrous root infection of disease-tolerant and susceptible citrus hosts by Phytophthora nicotianae and P. palmivora. Phytopathology, 88, 389–395.CrossRefPubMedGoogle Scholar
  35. Zentmyer, G. A. (1980). Phytophthora cinnamomi and the diseases it causes. Monograph No. 10 (p. 96). St Paul: American Phytopathological Society.Google Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Marília Horta
    • 1
    • 2
  • Paula Caetano
    • 3
  • Clara Medeira
    • 4
  • Isabel Maia
    • 4
  • Alfredo Cravador
    • 1
    • 2
  1. 1.IBB—Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, Plant and Animal Genomic GroupUTADVila RealPortugal
  2. 2.Faculdade de Ciências e TecnologiaUniversidade do AlgarveFaroPortugal
  3. 3.Faculdade de Ciências e TecnologiaUniversidade do AlgarveFaroPortugal
  4. 4.Instituto Nacional de Recursos Biológicos—Instituto Nacional de Investigação AgráriaOeirasPortugal

Personalised recommendations