Advertisement

European Journal of Plant Pathology

, Volume 127, Issue 3, pp 365–373 | Cite as

Resistance to Meloidogyne incognita expresses a hypersensitive-like response in Coffea arabica

  • Erika Valéria Saliba Albuquerque
  • Regina Maria Dechechi Gomes Carneiro
  • Poliene Martins Costa
  • Ana Cristina Meneses Mendes Gomes
  • Marcilene Santos
  • Antonio Alves Pereira
  • Michel Nicole
  • Diana Fernandez
  • Maria Fatima Grossi-de-Sa
Article

Abstract

Root-knot nematodes (RKN) are obligate parasite species of the genus Meloidogyne that cause great losses in Arabica coffee (Coffea arabica L.) plantations. Identification of resistant genotypes would facilitate the improvement of coffee varieties aiming at an environmental friendly and costless nematode control. In this work, the C. arabica genotype ‘UFV 408-28’ was found to be resistant to the most destructive RKN species M. incognita. Pathogenicity assays indicated that the highly aggressive populations of M. incognita races 1, 2 and 3 were not able to successfully reproduce on ‘UFV 408-28’ roots and displayed a low gall index (GI = 2). An average reduction of 87% reduction of the M. incognita population was observed on ‘UFV 408-28’ when compared to the susceptible cultivar ‘IAC 15’. By contrast, ‘UFV 408-28’ was susceptible to the related species M. exigua and M. paranaensis (GI = 5 and 4, respectively). Histological observations performed on sections of UFV408-28 roots infected with M. incognita race 1 showed that nematode infection could be blocked right after penetration or during migration and establishment stages, at 6 days, 7 days and 8 days after infection (DAI). Fluorescence and bright field microscopy observations showed that root cells surrounding the nematodes exhibited HR-like features such as accumulation of phenolic compounds and a necrotic cell aspect. In the susceptible ‘IAC 15’ roots, 6 DAI, feeding sites contained giant cells with a dense cytoplasm. Necrotic cells were never observed throughout the entire infection cycle. The HR-like phenotype observed in the ‘UFV 408-28’—M. incognita interaction suggests that the coffee resistance may be mediated by a R-gene based immunity system and may therefore provide new insights for understanding the molecular basis of RKN resistance in perennial crops.

Keywords

Coffea arabica Hypersensitive-like response Meloidogyne Resistance Root-knot nematode 

Notes

Acknowledgements

We thank Dr M. Eira (Embrapa, Brazil) for assistance in preservation and germination of grains, and Dr. L. Villain (Cirad, France) for manuscript reviewing. This work was funded by Consórcio Brasileiro de Pesquisa e Desenvolvimento do Café, Embrapa, UCB, CNPq and CAPES-Cofecub (project Sv 555/07).

References

  1. Anthony, F., Topart, P., Martinez, A., Silva, M., Nicole, M., & Silva, A. R. (2005). Hypersensitive-like reaction conferred by the Mex-1 resistance gene against Meloidogyne exigua in coffee. Plant Pathology, 54, 476–482.CrossRefGoogle Scholar
  2. Bellafiore, S., Shen, Z., Rosso, M.-N., Abad, P., Shih, P., & Briggs, S. (2008). Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. Public Library of Science Pathology, 4(10), e1000192. doi: 10.1371/journal.ppat.1000192.Google Scholar
  3. Bertrand, B., & Anthony, F. (2008). Genetics of resistance to root-knot nematodes (Meloidogyne spp.) and breeding. In R. M. Souza (Ed.), Plant-parasitic nematodes of coffee (pp. 165–190). Berlin: Springer.CrossRefGoogle Scholar
  4. Bertrand, B., Aguilar, G., Bompard, E., Rafinon, A., & Anthony, F. (1997). Comportement agronomique et résistance aux principaux déprédateurs des lignées de Sarchimor et Catimor au Costa Rica. Plantations Recherche Développement, 4, 312–321.Google Scholar
  5. Bird, A. F. (1961). The ultrastructure and histochemistry of a nematode-induced giant cell. Journal of Biophysical and Biochemical Cytology, 11, 701–715.CrossRefPubMedGoogle Scholar
  6. Bird, D. M., & Kaloshian, I. (2003). Are roots special? Nematodes have their say. Physiological and Molecular Plant Pathology, 62, 115–123.CrossRefGoogle Scholar
  7. Boneti, J. I. S., & Ferraz, S. (1981). Modificação do método de Hussey & Barker para extração de ovos de Meloidogyne incognita de raízes de cafeeiros. Fitopatologia Brasileira, 6, 553.Google Scholar
  8. Byrd, J. D. W., Kirkpatrick, J., & Barker, K. R. (1983). An improved technique for clearing and staining plant tissues for detection of nematodes. Journal of Nematology, 15, 142–143.Google Scholar
  9. Campos, V. P., & Villain, L. (2005). Nematode parasites of coffee and cocoa. In M. Luc, R. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 529–579). Wallingford: CAB International.CrossRefGoogle Scholar
  10. Carneiro, R. M. D. G., & Almeida, M. R. A. (2001). Técnica de eletroforese usada no estudo de enzimas dos nematóides de galhas para identificação de espécies. Nematologia Brasileira, 25, 34–44.Google Scholar
  11. Das, S., DeMason, D. A., Ehlers, J. D., Close, T. J., & Roberts, P. A. (2008). Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. Journal of Experimental Botany, 59, 1305–1313.CrossRefPubMedGoogle Scholar
  12. Fuller, V. L., Lilley, C. J., & Urwin, P. E. (2008). Nematode resistance. New Phytologist, 180, 27–44.CrossRefPubMedGoogle Scholar
  13. Ghini, R., Hamada, E., Júnior, M. J. P., Marengo, J. A., & Gonçalves, R. R. V. (2008). Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesquisa Agropecuária Brasileira, 43, 187–194.CrossRefGoogle Scholar
  14. Hartman, K. M., & Sasser, J. N. (1985). Identification of Meloidogyne species on the basis of differential host test and perineal-pattern morphology. In K. R. Barker, C. C. Carter, & J. N. Sasser (Eds.), Advanced treatise on meloidogyne (pp. 69–77). Raleigh: North Carolina State University.Google Scholar
  15. Hunt, D. J., Luc, M., Manzanilla-López, R. H. (2005). Identification, morphology and biology of plant parasitic nematodes. In M. Luc, R. Sikora, J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 11–52). Wallingford: CAB International.Google Scholar
  16. Hussey, R. S., & Baker, K. R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, 57, 1025–1028.Google Scholar
  17. Jaehn, A. (1991). Estimativa do número de gerações de três raças de Meloidogyne incognita em cafeeiro para o estado de São Paulo. Nematologia Brasileira, 15, 143–151.Google Scholar
  18. Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.CrossRefPubMedGoogle Scholar
  19. Lam, E., Kato, N., & Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411, 848–853.CrossRefPubMedGoogle Scholar
  20. Maluf, M. P. (2008). Genomic tools for the development of engineered Meloidogyne-resistant coffee cultivars. In R. M. Souza (Ed.), Plant-parasitic nematodes of coffee (pp. 191–205). Berlin: Springer.CrossRefGoogle Scholar
  21. Moura, R., & Regis, E. M. O. (1987). Reações de cultivares de feijoeiro comum (Phaseolus vulgaris) em relação ao parasitismo de Meloidogyne javanica e M. incognita. Nematologia Brasileira, 11, 215–225.Google Scholar
  22. Negron, J., & Acosta, N. (1987). Studies on host-parasite relashionships of Meloidogyne incognita and Coffea arabica cv Borbon. Nematropica, 14, 71–78.Google Scholar
  23. Noir, S., Anthony, F., Bertrand, B., Combes, M. C., & Lashermes, P. (2003). Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in Coffea arabica. Plant Pathology, 52, 97–103.CrossRefGoogle Scholar
  24. Pegard, A., Brizzard, G., Fazari, A., Soucaze, O., Abad, P., & Djian-Caporalino, C. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology, 95, 158–165.CrossRefPubMedGoogle Scholar
  25. Proite, K., Carneiro, R., Falcao, R., Gomes, A., Leal-Bertioli, S., Guimaraes, P., et al. (2008). Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp. Plant Pathology, 57, 974–980.CrossRefGoogle Scholar
  26. Randig, O., Bongiovanni, M., Carneiro, R. M. D. G., & Castagnone-Sereno, P. (2002). Genetic diversity of root-knot nematodes from Brazil as inferred from RAPD analysis and development of SCAR markers specific for the coffee damaging species. Genome Research, 45, 862–870.CrossRefGoogle Scholar
  27. Roberts, P. A., & May, D. M. (1986). Meloidogyne incognita resistance characteristics in tomato genotypes developed for processing. Journal of Nematology, 18, 383–359.Google Scholar
  28. Rodrigues, A., Abrantes, I. M. D., Melillo, M. T., & Bleve-Zacheo, T. (2000). Ultrastructural response of coffee roots to root-knot nematodes, Meloidogyne exigua and M. megadora. Nematropica, 30, 201–210.Google Scholar
  29. Scott, A. J., & Knott, M. A. (1974). A cluster analysis method for grouping means in the analysis of variance. Biometrics, 30, 507–512.Google Scholar
  30. Trudgill, D. L. (1997). Parthenogenetic root-knot nematodes (Meloidogyne spp.); how can these biotrophic endoparasites have such an enormous host range? Plant Pathology, 46, 26–32.CrossRefGoogle Scholar
  31. Vos, P., Simons, G., Jesse, T., Wijbrandi, J., Heinen, L., Hogers, R., et al. (1998). The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotechnology, 16, 1365–1369.CrossRefPubMedGoogle Scholar
  32. Vovlas, N., & Di Vito, M. (1991). Effect of root-knot nematodes Meloidogyne incognita and M. javanica on the growth of coffee (Coffea arabica L.) in pots. Nematoloia mediteranea, 19, 253–258.Google Scholar
  33. Whitehead, A. G., & Heming, J. R. (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology, 55, 25–38.CrossRefGoogle Scholar
  34. Williamson, V. M. (1999). Plant nematode resistance genes. Current Opinion in Plant Biology, 2, 327–331.CrossRefPubMedGoogle Scholar
  35. Williamson, V. M., & Hussey, R. S. (1996). Nematode pathogenesis and resistance in plants. Plant Cell, 8, 1735–1745.CrossRefPubMedGoogle Scholar
  36. Williamson, V. M., & Kumar, A. (2006). Nematode resistance in plants: the battle underground. Trends in Genetics, 22, 396–403.CrossRefPubMedGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Erika Valéria Saliba Albuquerque
    • 1
    • 3
    • 4
    • 5
  • Regina Maria Dechechi Gomes Carneiro
    • 1
  • Poliene Martins Costa
    • 1
  • Ana Cristina Meneses Mendes Gomes
    • 1
  • Marcilene Santos
    • 1
  • Antonio Alves Pereira
    • 2
  • Michel Nicole
    • 3
  • Diana Fernandez
    • 3
  • Maria Fatima Grossi-de-Sa
    • 1
    • 4
  1. 1.Embrapa—Recursos Genéticos e BiotecnologiaBrasíliaBrazil
  2. 2.CRZM, EPAMIGViçosaBrazil
  3. 3.IRD—Institut de Recherche pour le DéveloppementUMR-186 IRD-Cirad-UM2 “Résistance des Plantes aux Bioagresseurs”Montpellier-Cedex 5France
  4. 4.Graduate Program in Cellular and Molecular Biology (PPGBCM), Center of BiotechnologyFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  5. 5.Université de Montpellier II (UM2), Systèmes Intégrés en Biologie, Agronomie, Géosciences, Hydrosciences, Environnement (SIBAGHE)MontpellierFrance

Personalised recommendations