Advertisement

Development of a novel inducible bioluminescent and antibiotic resistance tagging system and its use to investigate the role of antibiotic production by Pectobacterium carotovorum ssp. carotovorum during potato tuber infection

  • Katalin Kovács
  • Philip J. Hill
  • Donald Grierson
  • Christine E. R. Dodd
  • Doru Pamfil
  • Rupert G. FrayEmail author
Original Research

Abstract

We report the construction of a novel Tn7 vector for the tagging and enumeration of target bacteria from complex microbial communities. The system utilises a cassette for inducible bioluminescence and tetracycline resistance that integrates at a defined neutral position present in most Gram-negative species. We used this approach to chromosomally tag Pectobacterium such that it could be enumerated in mixed consortia without placing a significant bioburden on the tagged strain. Two Pectobacterium strains, a carbapenem antibiotic producer and an isogenic knock-out strain were tagged using this system. The modified Pectobacterium strains were used to compare the extent to which potato tuber-associated and endophytic bacteria can gain advantage and multiply in planta, utilising the nutrients released by a Pectobacterium infection, when the infecting Pectobacterium is either an antibiotic producer (Car+) or a carbapenem knock-out (Car−) strain. We show that the ability to synthesise carbapenem has a significant effect upon Pectobacterium numbers throughout the course of the infection. Whilst limiting the number of other bacterial species, carbepenem production allows the Pectobacterium to replicate to higher titres in the rotting tuber. We anticipate that the Tn7 tagging vector will be of use to other researchers studying ecological interactions in complex environments.

Keywords

Erwinia carotovora Tn7 vector Soft rot 

Notes

Acknowledgements

Financial support for Katalin Kovács from the European Commission (Marie Curie Fellowship QLK1-CT-2000-60022 “Training site in the microbiological safety of foods”) is gratefully acknowledged. We thank Gregory McKenzie for the donation of the pGRG25 vector.

References

  1. Ausubel, F. H., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1994). Current Protocols in Molecular Biology. Wiley: New York.Google Scholar
  2. Bainton, N. J., Stead, P., Chhabra, S. R., Bycroft, B. W., Salmond, G. P. C., Stewart, G. S. A. B., et al. (1992). N-(3-oxohexanoyl)-L homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochemistry Journal, 288, 997–1004.Google Scholar
  3. Bertrand, K. P., Postle, K., Wray, L. V., Jr., & Reznikoff, W. S. (1983). Overlapping divergent promoters control expression of Tn10 tetracycline resistance. Gene, 23, 149–156.CrossRefPubMedGoogle Scholar
  4. Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., & Boyer, H. W. (1977). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene, 2, 95–113.CrossRefPubMedGoogle Scholar
  5. Choi, K. H., Gaynor, J. B., White, K. G., Lopez, C., Bosio, C. M., Karkhoff-Schweizer, R. R., et al. (2005). A Tn7 -based broad-range bacterial cloning and expression system. Nature Methods, 2, 443–448.CrossRefPubMedGoogle Scholar
  6. Corbel, S. Y., & Rossi, F. M. (2002). Latest developments and in vivo use of the Tet system: ex vivo and in vivo delivery of tetracycline-regulated genes. Current Opinion Biotechnology, 13, 448–452.CrossRefGoogle Scholar
  7. Coulthurst, S. J., Barnard, A. M. L., & Salmond, G. P. C. (2005). Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nature Review Microbiology, 3, 295–306.CrossRefGoogle Scholar
  8. Dandie, C. E., Larrainzar, E. G., Mark, L., O’Gara, F., & Morrissey, J. P. (2005). Establishment of DsRed.T3_S4T as an improved autofluorescent marker for microbial ecology applications. Environmental Microbiology, 7, 1818–1825.CrossRefPubMedGoogle Scholar
  9. Holden, M. T. G., McGowan, S. J., Bycroft, B. W., Stewart, G. S. A. B., Williams, P., & Salmond, G. P. C. (1998). Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora: facile trans activation by the carR transcriptional regulator. Microbiology, 144, 1495–1508.CrossRefPubMedGoogle Scholar
  10. Jansson, J. K. (2003). Marker and reporter genes: illuminating tools for environmental microbiologists. Current Opinion in Microbiology, 6, 310–316.CrossRefPubMedGoogle Scholar
  11. Jones, S., Yu, B., Bainton, N. J., Birdsall, M., Bycroft, B. W., Chhabra, S. R., et al. (1993). The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO Journal, 12, 2477–2482.PubMedGoogle Scholar
  12. Liu, H., Coulthurst, S. J., Pritchard, L., Hedley, P. E., Ravensdale, M., Humphris, S., et al. (2008). Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathogenes, 4, e1000093.CrossRefGoogle Scholar
  13. Llama-Palacios, A., Lopez-Solanilla, E., & Rodriguez-Palenzuela, P. (2002). The ybiT gene of Erwinia chrysanthemi codes for a putative ABC transporter and is involved in competitiveness against endophytic bacteria during infection. Applied Environmental Microbiology, 68, 1624–1630.CrossRefGoogle Scholar
  14. Mazzola, M., Cook, R. J., Thomashow, L. S., Weller, D. M., & Pierson, L. S. (1992). Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Applied Environmental Microbiology, 58, 2616–2624.Google Scholar
  15. McGowan, S., Sebaihia, M., Jones, S., Yu, B., Bainton, N., Chan, P. F., et al. (1995). Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology, 141, 541–550.CrossRefPubMedGoogle Scholar
  16. McGowan, J. S., Sebaihia, M., OLeary, S., Hardie, K. R., Williams, P., Stewart, G. S. A. B., et al. (1997). Analysis of carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosyntethic genes and evidence for a novel β-lactam resistence mechanism. Molecular Microbiology, 26, 545–556.CrossRefPubMedGoogle Scholar
  17. McGowan, S. J., Barnard, A. M., Bosgelmez, G., Sebaihia, M., Simpson, N. J., Thomson, N. R., et al. (2005). Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing-dependent control pathway. Molecular Microbiology, 55, 526–545.CrossRefPubMedGoogle Scholar
  18. McKenzie, G. J., & Craig, N. L. (2006). Fast, easy and efficient: site-specific insertion of transgenes into Enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiology, 6, 39.CrossRefPubMedGoogle Scholar
  19. Milton, D. L., O'Toole, R., Hörstedt, P., & Wolf-Watz, H. (1996). Flagellin A is essential for the virulence of Vibrio anguillarum. Journal of Bacteriology, 178, 1310–1319.PubMedGoogle Scholar
  20. Perehinec, T. M., Qazi, S. N. A., Gaddipati, S. R., Salisbury, V., Rees, C. E. D., & Hill, P. J. (2007). Construction and evaluation of multisite recombinatorial (Gateway) cloning vectors for gram-positive bacteria. BMC Molecular Biology, 8, 80.CrossRefPubMedGoogle Scholar
  21. Pérombelon, M. C. M. (2002). Potato diseases caused by soft rot Erwinias: an overview of pathogenesis. Plant Pathology, 51, 1–12.CrossRefGoogle Scholar
  22. Peters, J. E., & Craig, N. L. (2001). Tn7: smarter than we thought. Nature Reviews Molecular Cell Biology, 2, 806–814.CrossRefPubMedGoogle Scholar
  23. Pirhonen, M., Flego, D., Heikineimo, R., & Palva, E. T. (1993). A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO Journal, 12, 2467–2476.PubMedGoogle Scholar
  24. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory.Google Scholar
  25. Sayler, G. S., Fleming, J. T., & Nivens, D. E. (2001). Gene expression monitoring in soils by mRNA analysis and gene lux fusions. Current Opinion in Biotechnology, 12, 455–460.CrossRefPubMedGoogle Scholar
  26. Swift, S., Winson, M. K., Chan, P. F., Bainton, N. J., Birdsall, M., Reeves, P. J., et al. (1993). A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR: LuxI superfamily in enteric bacteria. Molecular Microbiology, 10, 511–520.CrossRefPubMedGoogle Scholar
  27. Welch, M., Todd, D. E., Whitehead, N. A., McGowan, S. J., Bycroft, B. W., & Salmond, G. P. C. (2000). N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO Journal, 19, 631–641.CrossRefPubMedGoogle Scholar
  28. Whitehead, N. A., Byers, J. T., Commander, P., Corbett, J. M., Coulthurst, S. J., Everson, L., et al. (2002). The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie van Leeuwenhoek, 81, 223–231.CrossRefPubMedGoogle Scholar

Copyright information

© KNPV 2009

Authors and Affiliations

  • Katalin Kovács
    • 1
  • Philip J. Hill
    • 1
  • Donald Grierson
    • 1
  • Christine E. R. Dodd
    • 1
  • Doru Pamfil
    • 2
  • Rupert G. Fray
    • 1
    Email author
  1. 1.School of BiosciencesUniversity of NottinghamLoughboroughUK
  2. 2.Biotehnology Department, Faculty of HorticultureUniversity of Agricultural Sciences and Veterinary MedicineCluj-NapocaRomania

Personalised recommendations