Advertisement

Maturation of pseudothecia and discharge of ascospores of Leptosphaeria maculans on oilseed rape stubble

  • B. Naseri
  • J. A. Davidson
  • E. S. Scott
Article

Abstract

The effects of temperature, wetness and darkness on formation of pseudothecia and the effect of temperature on the release of ascospores of L. maculans on oilseed rape stubble were studied in a controlled environment in South Australia. Pseudothecia of L. maculans developed at 5–20°C and the time taken to reach maturity and discharge ascospores decreased from 58 days at 5°C to 22.2 days at 15°C. The optimum temperature of those tested for pseudothecium maturation was between 15°C and 20°C but fewer pseudothecia were observed at 20°C than at 15°C. Exposure to a 12 h photoperiod enhanced pseudothecium formation on the stubble compared with continuous darkness. No pseudothecia formed on stubble moistened once a day at 15°C, whereas three sprays of water per day decreased maturation time in comparison with two sprays per day. More ascospores were released for a longer duration at 20°C than at 5–15°C, although peak sporulation occurred earlier at 5–10°C than at 20°C. These findings highlight the importance of moisture, temperature and light for production and release of inoculum from stubble. This information, combined with field data, may help to predict the onset of inoculum release.

Keywords

Blackleg Canola Darkness Phoma stem canker Temperature Wetness 

Notes

Acknowledgements

This research was a part of the PhD project of the first author, supported by a scholarship from the Iranian Ministry of Agriculture. The authors thank Mr T. Potter for providing canola stubble and Ms K. Dowling for assistance with statistical analyses.

References

  1. Bernard, C., Maisonneuve, C., Poisson, B., Pérès, A., Penaud, A., Pilorge, E., et al. (1999). Leptosphaeria maculans (Phoma lingam): First results of development of forecasting climatiological system. In: Proceedings of the 10th International Rapeseed Congress. Canberra, Australia: 26–9 September.Google Scholar
  2. Guo, X. W., & Fernando, W. G. D. (2005). Seasonal and diurnal patterns of spore dispersal by Leptosphaeria maculans from canola stubble in relation to environmental conditions. Plant Disease, 89, 97–104. doi: 10.1094/PD-89-0097.CrossRefGoogle Scholar
  3. Huang, Y. J., Fitt, B. D. L., & Hall, A. M. (2003). Survival of A-group and B-group Leptosphaeria maculans (phoma stem canker) ascospores in air and mycelium on oilseed rape stem debris. Annals of Applied Biology, 143, 359–369. doi: 10.1111/j.1744-7348.2003.tb00305.x.CrossRefGoogle Scholar
  4. Huang, Y. J., Fitt, B. D. L., Jedryczka, M., Dakowska, S., West, J. S., Gladders, P., et al. (2005). Patterns of ascospore release in relation to phoma stem canker epidemiology in England (Leptosphaeria maculans) and Poland (Leptosphaeria biglobosa). European Journal of Plant Pathology, 111, 263–277. doi: 10.1007/s10658-004-4421-0.CrossRefGoogle Scholar
  5. Huang, Y. J., Li, Z. Q., West, J. S., Todd, A. D., Hall, A. M., & Fitt, B. D. L. (2007). Effects of temperature and rainfall on date of release of ascospores of Leptosphaeria maculans (phoma stem canker) from winter oilseed rape (Brassica napus) debris in the UK. Annals of Applied Biology, 151, 99–111. doi: 10.1111/j.1744-7348.2007.00157.x.CrossRefGoogle Scholar
  6. Kharbanda, P. D., & Ostashewski, M. J. (1997). Influence of burying blackleg infected canola stubble on pseudothecia formation in Leptosphaeria maculans. Canadian Journal of Plant Pathology, 19, 111.Google Scholar
  7. Marcroft, S. J., Sprague, S. J., Pymer, S. J., Salisbury, P. A., & Howlett, B. J. (2003). Factors affecting production of inoculum of the blackleg fungus (Leptosphaeria maculans) in south-eastern Australia. Australian Journal of Experimental Agriculture, 43, 1231–1236. doi: 10.1071/EA02117.CrossRefGoogle Scholar
  8. Marcroft, S. J., Sprague, S. J., Salisbury, P. A., & Howlett, B. J. (2004). Potential for using host resistance to reduce production of pseudothecia and ascospores of Leptosphaeria maculans, the blackleg pathogen of Brassica napus. Plant Pathology, 53, 468–474. doi: 10.1111/j.1365-3059.2004.01050.x.CrossRefGoogle Scholar
  9. McGee, D. C. (1977). Blackleg (Leptosphaeria maculans (Desm.) Ces. et de Not.) of rapeseed in Victoria: Sources of infection and relationships between inoculum, environmental factors and disease severity. Australian Journal of Agricultural Research, 28, 53–62. doi: 10.1071/AR9770053.CrossRefGoogle Scholar
  10. McGee, D. C., & Petrie, G. A. (1979). Seasonal patterns of ascospore discharge by Leptosphaeria maculans in relation to blackleg of oilseed rape. Phytopathology, 69, 586–589. doi: 10.1094/Phyto-69-586.CrossRefGoogle Scholar
  11. Naseri, B., Davidson, J. A., & Scott, E. S. (2008a). Effect of temperature, cultivar and plant tissue on germination of and hyphal growth from ascospores of Leptosphaeria maculans. Australasian Plant Pathology, 37, 365–372. doi: 10.1071/AP08011.CrossRefGoogle Scholar
  12. Naseri, B., Davidson, J. A., & Scott, E. S. (2008b). Survival of Leptosphaeria maculans and associated mycobiota on oilseed rape stubble buried in soil. Plant Pathology, 57, 280–289. doi: 10.1111/j.1365-3059.2007.01768.x.CrossRefGoogle Scholar
  13. Pérès, A., & Poisson, B. (1997). Phoma du colza: avencées en epidemiologie. CETIOM - Oleoscope, 40, 37–40.Google Scholar
  14. Pérès, A., Poisson, B., Sourne, V.L., & Maisonneuve, C. (1999) Leptosphaeria maculans: Effect of temperature, rainfall and humidity on the formation of pseudothecia. In: Proceedings of the 10th International Rapeseed Congress. Canberra, Australia: 26–9 September.Google Scholar
  15. Petrie, G. A. (1994). Effects of temperature and moisture on the number, size and septation of ascospores produced by Leptosphaeria maculans (blackleg) on rapeseed stubble. Canadian Plant Disease Survey, 74, 141–151.Google Scholar
  16. Petrie, G. A. (1995). Patterns of ascospore discharge by Leptosphaeria maculans (blackleg) from 9- to 13-month-old naturally-infected rapeseed/canola stubble from 1977 to 1993 in Saskatchewan. Canadian Plant Disease Survey, 75, 35–43.Google Scholar
  17. Poisson, B., & Pérès, A. (1999). Studies related to maturation of Leptosphaeria maculans pseudothecia on rapeseed stubbles infected by stem canker. In: Proceedings of the 10th International Rapeseed Congress. Canberra, Australia: 26-9 September.Google Scholar
  18. Potter, T., & Stanley, M. (2002). Canola variety sowing guide for 2002. Fact sheet. Primary Industries and Resources of South Australia & South Australian Research and Development Institute, Agdex 144/10, ISBN1440-8775.Google Scholar
  19. Salam, M. U., Khangura, R. K., Diggle, A. J., & Barbetti, M. J. (2003). Blackleg Sporacle: A model for predicting onset of pseudothecia maturity and seasonal ascospore showers in relation to blackleg of canola. Phytopathology, 93, 1073–1081. doi: 10.1094/PHYTO.2003.93.9.1073.CrossRefPubMedGoogle Scholar
  20. Toscano-Underwood, C., Huang, Y. J., Fitt, B. D. L., & Hall, A. M. (2003). Effects of temperature on maturation of pseudothecia of Leptosphaeria maculans and L. biglobosa on oilseed rape stem debris. Plant Pathology, 52, 726–736. doi: 10.1111/j.1365-3059.2003.00930.x.CrossRefGoogle Scholar

Copyright information

© KNPV 2009

Authors and Affiliations

  1. 1.School of Agriculture, Food and WineThe University of Adelaide, PMB1Glen OsmondAustralia
  2. 2.South Australian Research and Development InstituteAdelaideAustralia
  3. 3.Department of Plant ProtectionAgricultural Research InstituteZanjanIran

Personalised recommendations