European Journal of Plant Pathology

, Volume 125, Issue 1, pp 159–171 | Cite as

Comparison of mycelial proteomes of two Verticillium albo-atrum pathotypes from hop

  • Stanislav Mandelc
  • Sebastjan Radisek
  • Polona Jamnik
  • Branka Javornik
Article

Abstract

Verticillium wilt diseases caused by Verticillium spp. are known in many important crops and can seriously threaten their production. We studied Verticillium albo-atrum by comparative analysis of the proteome of four hop isolates, classified by the severity of wilt symptoms as mild and lethal pathotypes, from two geographic origins. A two-dimensional electrophoresis reference map of mycelium proteins was first established, resolving up to 650 protein spots on Coomassie-stained gels in a range of pH 4–7 and MW 14 – 116 kDa. The average coefficient of variance for the 268 matched protein spots was 16% and 15%, respectively, for technical and biological variability. Principal component analysis (PCA) discriminated the geographic origin of the isolates and between the two pathotypes and showed a closer relationship among English isolates than Slovene ones. The two-dimensional electrophoresis patterns of one mild (PG1) with one lethal pathotype (PG2) from Slovenia and one mild (M) with one lethal pathotype (PV1) from England were compared. A total of 27 and 30 spots were found differentially expressed between the pathotypes, which were analysed by tandem mass spectrometry. Fifty-three proteins were identified, of which 17 matched proteins with annotated functions. The lethal pathotypes showed increased expression of peroxiredoxine and ascorbate peroxidase, a higher level of cytoskeleton components and regulators, and a higher rate of protein synthesis and energy metabolism. These results reveal differences in the expression level of the identified proteins between the two pathotypes and are discussed in relation to virulence.

Keywords

Fungi Proteomic Two-dimensional electrophoresis Virulence 

Notes

Acknowledgements

This study was funded by the Ministry of Higher Education, Science and Technology; contracts no. L4-7179, P4-0077 and S4-486-116/1000-05-310050. The authors thank Dr. Rajcevic Uros from NorLux Neuro-Oncology/Crp Sante, Luxembourg, for help in interpreting MS/MS data. We are grateful to Dr. Jesus Jorrin from the Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain, for critical reading of the manuscript and for thoughtful suggestions.

Supplementary material

10658_2009_9467_MOESM1_ESM.xls (91 kb)
ESM 1 (XLS 91 kb)

References

  1. Aisif, A. R., Oellerich, M., Amstrong, V. W., Riemenschneider, B., Monod, M., & Reichard, U. (2006). Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. Journal of Proteome Research, 5, 954–962. doi: 10.1021/pr0504586.CrossRefGoogle Scholar
  2. Beckman, C. H. (1987). The nature of wilt disease in plants. St Paul, MN: The American Phytopathological Society.Google Scholar
  3. Clarkson, J. M., & Heale, J. B. (1985). Pathogenicity and colonization studies on wild-type and auxotrophic isolates of Verticillium albo-atrum from hop. Plant Pathology, 34, 119–128. doi: 10.1111/j.1365-3059.1985.tb02768.x.CrossRefGoogle Scholar
  4. Cordin, O., Banroques, J., Tanner, N. K., & Linder, P. (2006). The DEAD-box protein family of RNA helicases. Gene, 367, 17–37. doi: 10.1016/j.gene.2005.10.019.PubMedCrossRefGoogle Scholar
  5. Ebstrup, T., Saalbach, G., & Egsgaard, H. (2005). A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics, 5, 2839–2848. doi: 10.1002/pmic.200401173.PubMedCrossRefGoogle Scholar
  6. Engelhard, A. W. (1957) Host index of Verticillium albo-atrum Reinke and Berth, (including Verticillium dahliae Kleb.). In: Supplement to Plant Disease Reporter No. 244, pp. 23-49.Google Scholar
  7. Fernandez-Acero, F. J., Jorge, I., Calvo, E., Vallejo, I., Carbu, M., Camafeita, E., et al. (2006). Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics, 6, S88–S96. doi: 10.1002/pmic.200500436.PubMedCrossRefGoogle Scholar
  8. Fernandez-Acero, F. J., Jorge, I., Calvo, E., Vallejo, I., Carbu, M., Camafeita, E., et al. (2007). Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Archives of Microbiology, 187, 207–215. doi: 10.1007/s00203-006-0188-3.PubMedCrossRefGoogle Scholar
  9. Fradin, E. F., & Thomma, B. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 7, 71–86. doi: 10.1111/j.1364-3703.2006.00323.x.CrossRefGoogle Scholar
  10. Gold, J., & Robb, J. (1995). The role of the coating response in Craigella tomatoes infected with Verticillium dahliae, race-1 and race-2. Physiological and Molecular Plant Pathology, 47, 141–157. doi: 10.1006/pmpp.1995.1048.CrossRefGoogle Scholar
  11. Harris, R. V. (1927). A wilt disease of hops. In: East Malling Research Station Annual Report for 1925, Supplement II. pp. 92–93.Google Scholar
  12. Heinz, R., Lee, S. W., Saparno, A., Nazar, R. N., & Robb, J. (1998). Cyclical systemic colonization in Verticillium-infected tomato. Physiological and Molecular Plant Pathology, 52, 385–396. doi: 10.1006/pmpp.1998.0163.CrossRefGoogle Scholar
  13. Herbert, B. R., Grinyer, J., McCarthy, J. T., Isaacs, M., Harry, E. J., Nevalainen, H., et al. (2006). Improved 2-DE of microorganisms after acidic extraction. Electrophoresis, 27, 1630–1640. doi: 10.1002/elps.200500753.PubMedCrossRefGoogle Scholar
  14. Jamnik, P., Radisek, S., Javornik, B., & Raspor, P. (2006). 2-D Separation of Verticillium albo-atrum proteins. Acta Agriculturae Slovenica, 87, 455–460.Google Scholar
  15. Jorge, I., Navarro, R. M., Lenz, D., Ariza, D., Porras, C., & Jorrin, J. (2005). The Holm Oak leaf proteome: Analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity search. Proteomics, 5, 222–234. doi: 10.1002/pmic.200400893.PubMedCrossRefGoogle Scholar
  16. Keyworth, W. G. (1942). Verticillium wilt of the hop (Humulus lupulus). The Annals of Applied Biology, 29, 346–357. doi: 10.1111/j.1744-7348.1942.tb06138.x.CrossRefGoogle Scholar
  17. Kim, Y., Nandakumar, M. P., & Marten, M. R. (2007). Proteomics of filamentous fungi. Trends in Biotechnology, 25, 395–400. doi: 10.1016/j.tibtech.2007.07.008.PubMedCrossRefGoogle Scholar
  18. Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology, 48, 251–275. doi: 10.1146/annurev.arplant.48.1.251.CrossRefGoogle Scholar
  19. Lee, S. W., Mazar, R. N., Powell, D. A., & Robb, J. (1992). Reduced PAL gene expression in Verticillium-infected resistant tomato. Plant Molecular Biology, 18, 345–352. doi: 10.1007/BF00034961.PubMedCrossRefGoogle Scholar
  20. Matsui, Y., & Tohe, A. (1992). Yeast Rho3 and Rho4 RAS superfamily genes are necessary for bud growth, and their defect is suppressed by a high-dose of bud formation genes cdc42 and bem1. Molecular and Cellular Biology, 12, 5690–5699.PubMedGoogle Scholar
  21. Mol, L., & Scholte, K. (1995). Formation of microsclerotia of Verticillium dahliae Kleb on various plant-parts of two potato cultivars. Potato Research, 38, 143–150. doi: 10.1007/BF02357927.CrossRefGoogle Scholar
  22. Molloy, M. P., Brzezinski, E. E., Hang, J., McDowell, M. T., & VanBogelen, R. A. (2003). Overcoming technical and biological variation in quantitative proteomics. Proteomics, 3, 1912–1919. doi: 10.1002/pmic.200300534.PubMedCrossRefGoogle Scholar
  23. Paper, J. M., Scott-Craig, J. S., Adhikari, N. D., Cuom, C. A., & Walton, J. D. (2007). Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics, 7, 3171–3183. doi: 10.1002/pmic.200700184.PubMedCrossRefGoogle Scholar
  24. Radisek, S., Jakse, J., Simoncic, A., & Javornik, B. (2003). Characterization of Verticillium albo-atrum field isolates using pathogenicity data and AFLP analysis. Plant Disease, 87, 633–638. doi: 10.1094/PDIS.2003.87.6.633.CrossRefGoogle Scholar
  25. Radisek, S., Jakse, J., & Javornik, B. (2006). Genetic variability and virulence among Verticillium albo-atrum isolates from hop. European Journal of Plant Pathology, 116, 301–314. doi: 10.1007/s10658-006-9061-0.CrossRefGoogle Scholar
  26. Ridley, A. J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in Cell Biology, 16, 522–529. doi: 10.1016/j.tcb.2006.08.006.PubMedCrossRefGoogle Scholar
  27. Robb, J. (2007). Verticillium tolerance: resistance, susceptibility, or mutualism? Canadian Journal of Botany, 85, 903–910. doi: 10.1139/B07-093.CrossRefGoogle Scholar
  28. Rospert, S., Dubaquie, Y., & Gautschi, M. (2002). Nascent-polypeptide-associated complex. Cellular and Molecular Life Sciences, 59, 1632–1639. doi: 10.1007/PL00012490.PubMedCrossRefGoogle Scholar
  29. Schmitt, S., Prokisch, H., Schlunck, T., Camp, D. G., Ahting, U., Waizenegger, T., et al. (2006). Proteome analysis of mitochondrial outer membrane from Neurospora crassa. Proteomics, 6, 72–80. doi: 10.1002/pmic.200402084.PubMedCrossRefGoogle Scholar
  30. Sewell, G. W. F., & Wilson, J. F. (1974). Hop wilt, soil temperature and nitrogen. In: East Malling Research Station Annual Report for1973. pp. 203–204.Google Scholar
  31. Talboys, P. W. (1960). A culture-medium aiding the identification of Verticillium albo-atrum and V. dahliae. Plant Pathology, 9, 57–58. doi: 10.1111/j.1365-3059.1960.tb01147.x.CrossRefGoogle Scholar
  32. Ueda, T., Kikuchi, A., Ohga, N., Yamamoto, J., & Takai, Y. (1990). Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to RhoB p20, a RAS p21-like GTP-binding protein. Journal of Biological Chemistry, 265, 9373–9380.PubMedGoogle Scholar
  33. Walters, D. (2003). Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytologist, 159, 109–115. doi: 10.1046/j.1469-8137.2003.00802.x.CrossRefGoogle Scholar
  34. Wilhelm, S. (1955). Longevity of the Verticillium wilt fungus in the laboratory and in the field. Phytopathology, 45, 180–181.Google Scholar
  35. Yajima, W., & Kav, N. N. V. (2006). The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics, 6, 5995–6007. doi: 10.1002/pmic.200600424.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2009

Authors and Affiliations

  • Stanislav Mandelc
    • 1
  • Sebastjan Radisek
    • 2
  • Polona Jamnik
    • 3
  • Branka Javornik
    • 1
  1. 1.Biotechnical Faculty, Agronomy DepartmentUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Slovenian Institute for Hop Research and BrewingZalecSlovenia
  3. 3.Biotechnical Faculty, Food Science and Technology DepartmentUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations