European Journal of Plant Pathology

, Volume 125, Issue 1, pp 63–72

Impact of Erysiphe alphitoides on transpiration and photosynthesis in Quercus robur leaves

Article

Abstract

Oak powdery mildew, (Erysiphe alphitoides) causes one of the most common diseases of oaks. We assessed the impact of this pathogen on photosynthesis and water relations of infected leaves using greenhouse-grown oak seedlings. Transpiration of seedlings infected by oak powdery mildew was also investigated. Altogether, E. alphitoides had a low impact on host gas exchange whether at the leaf or whole plant scale. Maximal stomatal conductance of infected leaves was reduced by 20–30% compared to healthy controls. Severely infected seedlings did not experience any detectable change of whole plant transpiration. The reduction in net CO2 assimilation, An, was less than proportional to the fraction of leaf area infected. Powdery mildew reduced both the maximal light-driven electron flux (Jmax) and the apparent maximal carboxylation velocity (Vcmax) although Vcmax was slightly more impacted than Jmax. No compensation for the infection occurred in healthy leaves of partly infected seedlings as the reduced photosynthesis in the infected leaves was not paralleled by increased An levels in the healthy leaves of the seedlings. However, E. alphitoides had a strong impact on the leaf life-span of infected leaves. It is concluded that the moderate effect of E. alphitoides on oak might be related to the small impact on net CO2 assimilation rates and on tree transpiration; nevertheless, the severe reduction in leaf life-span of heavily infected leaves may lead to decreased carbon uptake over the growth season.

Keywords

Powdery mildew CO2 Assimilation Gas exchange 

References

  1. Ayres, P. G., & Zadoks, J. C. (1979). Combined effects of powdery mildew disease and soil water level on the water relations and growth of barley. Physiological Plant Pathology, 14, 347–361. doi:10.1016/0048-4059(79) 90054-7.CrossRefGoogle Scholar
  2. Bassanezi, R. B., Amorim, L., Bergamin Filho, A., & Berger, R. D. (2002). Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. Journal of Phytopathology, 150, 37–47. doi:10.1046/j.1439-0434.2002.00714.x.CrossRefGoogle Scholar
  3. Bastiaan, L. (1991). Ratio between virtual and visual lesion size as a measure to describe reduction in leaf photosynthesis of rice due to leaf blast. Phytopathology, 81, 611–615. doi:10.1094/Phyto-81-611.CrossRefGoogle Scholar
  4. Bauer, H., Plattner, K., & Volgger, W. (2000). Photosynthesis in Norway spruce seedlings infected by the needle rust Chrysomyxa rhododendri. Tree Physiology, 20, 211–216.PubMedGoogle Scholar
  5. Edwards, M. C., & Ayres, P. G. (1982). Seasonal changes in resistance of Quercus petraea (sessile oak) leaves to Microsphaera alphitoides. Transactions of the British Mycological Society, 78, 569–571.CrossRefGoogle Scholar
  6. Erickson, J. E., Stanosz, G. R., & Kruger, E. L. (2003). Photosynthetic consequences of Marssonina leaf spot differ between two poplar hybrids. The New Phytologist, 161, 577–583. doi:10.1046/j.1469-8137.2003.00968.x.Google Scholar
  7. Ethier, G. J., & Livingston, N. J. (2004). On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-vonCaemmerer-Berry photosynthesis model. Plant, Cell & Environment, 27, 137–153. doi:10.1111/j.1365-3040.2004.01140.x.CrossRefGoogle Scholar
  8. Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology, 40, 503–537. doi:10.1146/annurev.pp. 40.060189.002443.CrossRefGoogle Scholar
  9. Foex, M. E. (1941). L’invasion des chênes d’europe par le blanc ou oidium. Revue des Eaux et Forêts, 79, 338–349.Google Scholar
  10. Holloway, P. J., Maclean, D. J., & Scott, K. J. (1992). Electron transport in thylakoids isolated from barley leaves infected by the powdery mildew fungus (Erisiphe graminis DC. Ex Merat f.sp. hordei marchal). The New Phytologist, 120, 145–151. doi:10.1111/j.1469-8137.1992.tb01067.x.CrossRefGoogle Scholar
  11. Hewitt, H. G., & Ayres, P. G. (1975). Changes in CO2 and water vapour exchange rates in leaves of Quercus robur infected by Microspheara alphitoides (powdery mildew). Physiological Plant Pathology, 7, 127–137. doi:10.1016/0048-4059(75) 90003-X.CrossRefGoogle Scholar
  12. Hewitt, H. G., & Ayres, P. G. (1976). Effect of infection by Microsphaera alphitoides (powdery mildew) on carbohydrate levels and translocation in seedlings of Quercus robur. The New Phytologist, 77, 379–390. doi:10.1111/j.1469-8137.1976.tb01527.x.CrossRefGoogle Scholar
  13. Lakso, A. N., Pratt, C., Pearson, R. C., Pool, R. M., Seem, R. C., & Welser, M. (1982). Photosynthesis, transpiration and water use effeciency of mature grape leaves infected with Uncinula nectar (powdery mildew). Phytopathology, 72, 232–236. doi:10.1094/Phyto-72-232.CrossRefGoogle Scholar
  14. Lopes, D. B., & Berger, R. D. (2001). The effect of rust and anthracnose on the photosynthetic competence of diseased bean. leaves. Phytopathology, 91, 2121–2220. doi:10.1094/PHYTO.2001.91.2.212.CrossRefGoogle Scholar
  15. Marçais, B., & Bréda, N. (2006). Role of an opportunistic pathogen in the decline of stressed oak trees. Journal of Ecology, 94, 1214–1223. doi:10.1111/j.1365-2745.2006.01173.x.CrossRefGoogle Scholar
  16. Mayr, S., Siller, C., Kriss, M., Oberhuber, W., & Bauer, H. (2001). Photosynthesis in rust-infected adult Norway spruce in the field. The New Phytologist, 151, 683–689. doi:10.1046/j.0028-646x.2001.00222.x.CrossRefGoogle Scholar
  17. Mignucci, J. S., & Boyer, J. S. (1979). Inhibition of photosynthesis and transpiration in soybean infected by Microsphaera diffuse. Phytopathology, 69, 227–230. doi:10.1094/Phyto-69-227.CrossRefGoogle Scholar
  18. Niederleitner, S., & Knoppik, D. (1997). Effects of the chery leaf spot pathogen Blumeriella jaapii on gas exchange before and after expression of symptoms on cherry leaves. Physiol. Mol.r Plant Path, 51, 145–153.CrossRefGoogle Scholar
  19. Pennypacker, B. W., Knievel, D. P., Leath, K. T., Pell, E. J., & Hill, R. R,. Jr. (1990). Analysis of photosynthesis in resistant and susceptible Alfalfa clones infected with Verticillium albo-atrum. Phytopathology, 80, 1300–1306. doi:10.1094/Phyto-80-1300.CrossRefGoogle Scholar
  20. Pinkard, E. A., & Mohammed, C. L. (2006). Photosynthesis of Eucalyptus globulus with Mycosphaerella leaf disease. The New Phytologist, 170, 119–127. doi:10.1111/j.1469-8137.2006.01645.x.PubMedCrossRefGoogle Scholar
  21. Prats, E., Gay, A. P., Mur, L. A. J., Thomas, B. J., & Carver, T. L. W. (2006). Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis. Journal of Experimental Botany, 57, 2211–2226. doi:10.1093/jxb/erj186.PubMedCrossRefGoogle Scholar
  22. Robert, C., Bancal, M. O., Ney, B., & Lannou, C. (2004). Wheat leaf photosynhesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. The New Phytologist, 165, 227–241. doi:10.1111/j.1469-8137.2004.01237.x.CrossRefGoogle Scholar
  23. Robert, C., Bancal, M. O., Lannou, C., & Ney, B. (2006). Quantification of the effects of Septoria tritici blotch on wheat leaf gas exchange with respect to lesion age, leaf number, and leaf nitrogen status. Journal of Experimental Botany, 57, 225–234. doi:10.1093/jxb/eri153.PubMedCrossRefGoogle Scholar
  24. Roloff, I., Scherm, H., & van Iesel, M. W. (2004). Photosynthesis of blueberry leaves as affected by Septoria leaf spot and abiotic leaf damage. Plant Disease, 88, 397–401. doi:10.1094/PDIS.2004.88.4.397.CrossRefGoogle Scholar
  25. Sabri, N., Dominy, P. J., & Clarke, D. D. (1997). The relative tolerance of wild and cultivated oats to infection by Erysiphe graminis f.sp. avenae: II. the effects of infection on photosynthesis and respiration. Physiological and Molecular Plant Pathology, 50, 321–335. doi:10.1006/pmpp.1997.0095.CrossRefGoogle Scholar
  26. Shtienberg, D. (1992). Effects of foliar diseases on gas exchange processes: a comparative study. Phytopathology, 82, 760–765. doi:10.1094/Phyto-82-760.CrossRefGoogle Scholar
  27. Soutrenon, A. (1998). Une experimentation pluri-annuelle confirme l’impact de l’oïdium sur de jeunes sujets. Les cahiers du DSF, 1-2000 (la santé des forets [France] en 1997), pp. 93–94. Paris: Min. Agri. Peche (DERF).Google Scholar
  28. Thomas, F. M., Blank, R., & Hartmann, G. (2002). Abiotic and biotic factors and their interactions as causes of oak decline in central Europe. Forest Pathology, 32, 277–307. doi:10.1046/j.1439-0329.2002.00291.x.CrossRefGoogle Scholar
  29. Wright, D. P., Baldroni, B. C., Shophord, M. C., & Scholes, J. D. (1995). Source-sink relationships in Wheat leaves infected with powdery mildew. II. Alterations in carbohydrates in carbohydrate metabolism. Physiological and Molecular Plant Pathology, 47, 255–267.Google Scholar

Copyright information

© KNPV 2009

Authors and Affiliations

  1. 1.INRA, Nancy Université, UMR1136 Interactions arbres-microorganismesINRA-NancyChampenouxFrance
  2. 2.INRA, Nancy Université, UMR1137, Ecologie et Ecophysiologie forestièresINRA-NancyChampenouxFrance

Personalised recommendations