Advertisement

European Journal of Plant Pathology

, Volume 125, Issue 1, pp 23–38 | Cite as

The Horsfall-Barratt scale and severity estimates of citrus canker

  • C. H. Bock
  • T. R. Gottwald
  • P. E. Parker
  • A. Z. Cook
  • F. Ferrandino
  • S. Parnell
  • F. van den Bosch
Article

Abstract

Citrus canker assessment data were used to investigate effects of using the Horsfall-Barratt (H-B) scale to estimate disease compared to direct estimation to the nearest percent. Twenty-eight raters assessed each of two-hundred infected leaves (0–38% true diseased area). The data were converted to the H-B scale. Correlation (r) showed that direct estimates had higher inter-rater reliability compared to H-B scaled data (r = 0.75 and 0.71 for direct estimates and H-B scaled data, respectively). Lin’s concordance correlation (LCC, ρ c ) analysis showed individual rater estimates by direct estimation had better agreement with true values compared to H-B scaled data. The direct estimates were more precise compared to H-B scaled data (r = 0.80–0.95 and 0.61–0.90, respectively), but measures of generalised bias or accuracy (C b ) were similar for both methods (0.38–1.00). Cumulative mean disease and cumulative variance of the means were calculated for each rater on a leaf-by-leaf basis. Direct estimates were closer to the true severity 59.5% of the time, and to the cumulative true sample mean 53.7% of the time, and to the cumulative true sample mean variance 63.6% of the time. Estimates of mean severity for each leaf based on estimates by 3, 5, 10, 20 and 28 raters were compared to true disease severity. LCC showed that rater-means based on more raters had better agreement with true values compared to individual estimates, but H-B scale data were less precise, although with means based on ≥ 10 raters, agreement was the same for both assessment methods. Magnitude and dispersion of the variance of the means based on H-B scaled data was greater than that by direct estimates. H-B scaling did not improve reliability, accuracy or precision of the estimate of citrus canker severity compared to direct visual estimation.

Keywords

Epidemiology Disease scales Disease incidence Infection Crop loss Disease management 

References

  1. Amanat, P. (1976). Stimuli effecting disease assessment. Agriculturae Conspectus Scientificus, 39, 27–31.Google Scholar
  2. Baird, J. C., & Norma, E. (1978). Fundamentals of scaling and psychophysics. New York, NY: Wiley.Google Scholar
  3. Belasque Junior, J., Bassanezi, R. B., Spósito, M. B., Ribeiro, L. M., de Jesus Júnior, W. C., & Amorim, L. (2005). Escalas diagramáticas para avaliação da severidade do cancro cítrico. Fitopatologia Brasileira, 30, 387–393.CrossRefGoogle Scholar
  4. Birnbaum, M.H. (1994). Psychophysics. In Encyclopedia of Human Behavior, San Diego: Academic.Google Scholar
  5. Bock, C. H., Parker, P. E., Cook, A. Z., & Gottwald, T. R. (2008a). Visual assessment and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Disease, 92, 530–541.CrossRefGoogle Scholar
  6. Bock, C. H., Parker, P. E., Cook, A. Z., & Gottwald, T. R. (2008b). Characteristics of the perception of different severity measures of citrus canker and the relations between the various symptom types. Plant Disease, 92, 927–939.CrossRefGoogle Scholar
  7. Bock, C.H., Parker, P.E., Cook, A.Z., Riley, T. & Gottwald, T.R. (2009). Comparison of assessment of citrus canker foliar symptoms by experienced and inexperienced raters. Plant Disease, 93, 412–424.CrossRefGoogle Scholar
  8. Bussotti, F., Schaub, M., Cozzi, A., Krauchi, N., Ferretti, M., Novak, K., et al. (2003). Assessment of ozone visible symptoms in the field: perspectives of quality control. Environmental Pollution, 125, 81–89.PubMedCrossRefGoogle Scholar
  9. Chappelka, A. H., Neufeld, H. S., Davison, A. W., Somers, G. L., & Renfro, J. R. (2003). Ozone injury on cutleaf coneflower (Rudbeckia lacinata) and crown-beard (Verbesina occidentalis) in Great Smoky Mountains National Park. Environmental Pollution, 125, 53–59.PubMedCrossRefGoogle Scholar
  10. Everitt, B. S. (1998). The Cambridge dictionary of statistics, p. 360. Cambridge, UK: Cambridge University Press.Google Scholar
  11. Forbes, G. A., & Jeger, M. J. (1987). Factors affecting the estimation of disease intensity in simulated plant structures. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 94, 113–120.Google Scholar
  12. Forbes, G. A., & Korva, J. T. (1994). The effect of using a Horsfall-Barratt scale on precision and accuracy of visual estimation of potato late blight severity in the field. Plant Pathology, 43, 675–682.CrossRefGoogle Scholar
  13. Gottwald, T. R., & Timmer, L. W. (1995). The efficacy of windbreaks to reduce in the spread of citrus canker caused by Xanthomonas campestris pv. citri. Tropical Agriculture, 72, 194–201.Google Scholar
  14. Gottwald, T. R., Graham, J., Civerolo, J. H., Barrett, H. C., & Hearn, C. J. (1993). Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determined by leaf mesophyll susceptibility. Plant Disease, 77, 1004–1009.Google Scholar
  15. Hagan, A.K., Olive, J.W., Stephenson, J. & Rivas-Davilla, M. (2003). Impact of application rate and treatment interval on the control of Entomosporium leaf spot, dayliliy rust, and powdery mildew on container-grown nursery crops with MilStop. Timely Information - Plant Pathology Series PP 557. Auburn University, AL.Google Scholar
  16. Hau, B., Kranz, J., & Konig, R. (1989). Fehler beim Schätzen von Befallsstärken bei Pflanzenkrankheiten. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 96, 649–674.Google Scholar
  17. Herbert, T. T. (1982). The rationale for the Horsfall-Barratt plant disease assessment scale. Phytopathology, 72, 1269.CrossRefGoogle Scholar
  18. Horsfall, J.G. (1945). Fungicides and their action. Annales cryptogamica et phytopathologici, Vol II. Chronica Botanica, 239 pp. Waltham, MA.Google Scholar
  19. Horsfall, J.G. (1986). This week’s citation classic: Horsfall J.G. & Barratt, R.W. An improved grading system for measuring plant disease. Phytopathology 35 , 655. 1945. Current Contents (Agriculture, Biology and Environmental Sciences), 15, 14.Google Scholar
  20. Horsfall, J. G., & Barratt, R. W. (1945). An improved grading system for measuring plant disease. Phytopathology, 35, 655. (Abstract).Google Scholar
  21. Horsfall, J. G., & Cowling, E. B. (1978). Pathometry: the measurement of plant disease. In J. G. Horsfall & E. B. Cowling (Eds.), Plant Disease: An Advanced Treatise Vol II, pp. 120–136. New York: Academic.Google Scholar
  22. Keinath, A. P., Dubose, V. B., May, W. H., & Wechter, W. P. (2006). Effect of Actigard on Xanthomonas leaf spot on rape greens, 2005. Fungicide and Nematocide Tests, 61, V058.Google Scholar
  23. Koch, H., & Hau, B. (1980). Ein psychologischer aspect beim schatzen von pflanzenkrankheiten. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 87, 587–593.Google Scholar
  24. Kranz, J. (1988). Measuring plant disease. In J. Kranz & J. Rotem (Eds.), Experimental Techniques in Plant Disease Epidemiology, pp. 35–50. New York: Springer-Verlag.Google Scholar
  25. Lang, J. M., Gent, D. H., & Schwartz, H. F. (2007). Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Disease, 91, 871–878.CrossRefGoogle Scholar
  26. Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268.PubMedCrossRefGoogle Scholar
  27. Madden, L. V., Hughes, G., & van den Bosch, F. (2007). The study of plant disease epidemics. St. Paul, MN: APS Press.Google Scholar
  28. Mila, A. L., Driever, G. F., Morgan, D. P., & Michailides, T. J. (2005). Effects of latent infection, temperature, precipitation, and irrigation on panicle and shoot blight of pistachio in California. Phytopathology, 95, 926–932.PubMedCrossRefGoogle Scholar
  29. Nita, M., Ellis, M. A., & Madden, L. V. (2003). Reliability and accuracy of visual estimation of Phomopsis leaf blight of strawberry. Phytopathology, 93, 995–1005.PubMedCrossRefGoogle Scholar
  30. Nutter, F. W,. Jr, & Schultz, P. M. (1995). Improving the accuracy and precision of disease assessment: selection of methods and use of computer-aided training programs. Canadian Journal of Plant Pathology, 17, 174–178.Google Scholar
  31. Nutter, F. W,. Jr, & Esker, P. D. (2006). The role of psychophysics in phytopathology. European Journal of Plant Pathology, 114, 199–213.CrossRefGoogle Scholar
  32. Nutter, F. W,. Jr, Gleason, M. L., Jenco, J. H., & Christians, N. C. (1993). Assessing the accuracy, intra-rater repeatability, and inter-rater reliability of disease assessment system. Phytopathology, 83, 806–812.CrossRefGoogle Scholar
  33. Parker, S. R., Whelan, M. J., & Royle, D. J. (1995). Reliable measurement of disease severity. Aspects of Applied Biology, 43, 205–214.Google Scholar
  34. Pernezney, K., Nuessley, G., & Stall, W. (2008). Integrated pest management for Florida snap beans. Gainesville, FL: Pamphlet PPP37, IFAS, University of Florida.Google Scholar
  35. Pethybridge, S. J., Hay, F. S., & Wilson, C. R. (2004). Pathogenicity of fungi commonly isolated from foliar disease in Tasmanian pyrethrum crops. Australasian Plant Pathology, 33, 441–444.CrossRefGoogle Scholar
  36. Redman, C. E., & Brown, I. F.,. Jr. (1964). A statistical evaluation of the Barratt and Horsfall rating system. Phytopathology, 54, 904. (Abstract).Google Scholar
  37. Redman, C. E., King, E. P., & Brown Jr, I. F. (1969). Tables for converting Barratt and Horsfall rating scores to estimated mean percentages, p. 8. Elanco Products: Indianapolis.Google Scholar
  38. Shaw, M. W., & Royle, D. J. (1989). Estimation and validation of a function describing the rate at which Mycosphaerella graminicola causes yield loss in winter wheat. Annals of Applied Biology, 115, 425–442.CrossRefGoogle Scholar
  39. Sherwood, R. T., Berg, C. C., Hoover, M. R., & Zeiders, K. E. (1983). Illusions in visual assessment of Stagonospora Leaf Spot of orchardgrass. Phytopathology, 73, 173–177.CrossRefGoogle Scholar
  40. Slopek, S. W. (1989). An improved method for estimating percent leaf area diseased using a 1 to 5 disease assessment scale. Canadian Journal of Plant Pathology, 11, 381–387.Google Scholar
  41. Stevenson, W. R., James, R. V., Inglis, D. A., Johnson, D. A., Schotzko, R. T., & Thornton, R. E. (2007). Fungicide spray programs for Defender, a new potato cultivar with resistance to late blight and early blight. Plant Disease, 91, 1327–1336.CrossRefGoogle Scholar

Copyright information

© KNPV 2009

Authors and Affiliations

  • C. H. Bock
    • 1
  • T. R. Gottwald
    • 2
  • P. E. Parker
    • 3
  • A. Z. Cook
    • 3
  • F. Ferrandino
    • 4
  • S. Parnell
    • 5
  • F. van den Bosch
    • 5
  1. 1.University of FloridaFt. PierceUSA
  2. 2.USDA-ARS-USHRLFt. PierceUSA
  3. 3.USDA-APHIS-PPQEdinburgUSA
  4. 4.Department of Plant Pathology and Ecology, ConnecticutAgricultural Experiment StationNew HavenUSA
  5. 5.Rothamsted ResearchHarpenden, Herts.UK

Personalised recommendations