European Journal of Plant Pathology

, Volume 124, Issue 3, pp 533–541 | Cite as

Influence of silicon on some components of resistance to anthracnose in susceptible and resistant sorghum lines

  • Renata S. Resende
  • Fabricio Á. Rodrigues
  • Juliana M. Soares
  • Carlos R. Casela


This study aimed to evaluate the effect of silicon (Si) rates on some components of sorghum resistance to anthracnose. Two 2×5 factorial experiments, consisting of two sorghum lines (BR005 and BR009, resistant and susceptible, respectively) and five Si application rates (0, 0.06, 0.12, 0.24 and 0.30 g Si kg−1 of soil) were arranged in a completely randomised design with three replications. Plants from both lines were inoculated with a conidial suspension of Colletotrichum sublineolum (1×106 conidia ml−1) 30 days after emergence. The incubation period (IP), latent period (LP60), area under relative infection efficiency progress curve (AURIEPC), area under anthracnose index progress curve (AUAIPC), final disease severity (FDS), percentage of pigmented leaf area (PLA), and percentage of necrotic leaf area (NLA) were evaluated. Silicon and calcium (Ca) content in leaf tissue of both lines was also determined. The content of Si in leaf tissue increased relative to the control by 55 and 58%, respectively, for the susceptible and resistant lines. There was no significant change in Ca content in leaf tissue for either of the lines; therefore the variations in Si accounted for differences in the level of disease response. The IP for the resistant line was not affected by Si application rates. The LP60 was not evaluated in the resistant line due to the absence of acervuli. For the resistant line, Si application rates had no significant effect on AUAIPC, FDS, percentage of PLA, and percentage of NLA. On the susceptible line, a quadratic regression model best described the effect of Si application rates on IP, LP60, AURIEPC, AUAIPC, FDS, percentage of PLA, and percentage of NLA. The correlation between Si content in leaf tissue of the susceptible line and the AURIEPC, AUAIPC, FDS, PLA, and NLA was negatively significant (r = −0.57, −0.37, −0.40, −0.67, and −0.77, respectively). There was no correlation between Si content and IP or LP60. The correlation between the percentage of PLA with the percentage of NLA was negatively significant (r = −0.74). In conclusion, the results from this study underscore the importance of Si in sorghum resistance to anthracnose particularly for the susceptible line.


Acervulus Colletotrichum sublineolum Foliar disease Host resistance Silicon Sorghum bicolor 


  1. Ali, M. E. K., & Warren, H. L. (1987). Physiological races of Colletotrichum graminicola on sorghum. Plant Disease, 71, 402–404.CrossRefGoogle Scholar
  2. Ali, M. E. K., & Warren, H. L. (1992). Anthracnose of sorghum. In W. A. J. De Milliano, R. A. Frederiksen, & G. D. Bengston (Eds.), Sorghum and millets diseases: A second world review (pp. 203–208). Patancheru, India: ICRISAT.Google Scholar
  3. Brecht, M. O., Datnoff, L. E., Kucharek, T. A., & Nagata, R. T. (2004). Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustine grass. Plant Disease, 88, 338–344.CrossRefGoogle Scholar
  4. Casela, C. R., Frederiksen, R. A., & Ferreira, A. S. (1993). Evidence for dilatory resistance to anthracnose in sorghum. Plant Disease, 77, 908–911.Google Scholar
  5. Datnoff, L. E., Rodrigues, F. Á., & Seebold, K. W. (2007). Silicon and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 233–246). St. Paul, MN: The American Phytopathological Society.Google Scholar
  6. Dhingra, O. D., Sinclair, J. B. (1995). Basic plant pathology methods (p. 434). 2nd edition. CRC Press Inc.Google Scholar
  7. Frederiksen, R. A. (2000). Compendium of sorghum diseases p. 129. St. Paul, MN: The American Phytopathological Society.Google Scholar
  8. Gomez, K. A., & Gomez, A. A. (1994). Statistical procedures for agricultural research (2nd ed.). USA, New York: Wiley.Google Scholar
  9. Gwary, D. M., & Asala, S. W. (2006). Cost-benefit of fungicidal control of anthracnose on sorghum in Northern Nigeria. International Journal of Agriculture & Biology, 8, 306–308.Google Scholar
  10. Harris, H. B., & Sowell, G. (1970). Incidence of Colletotrichum graminicola on Sorghum bicolor introductions. Plant Disease Reporter, 54, 60–62.Google Scholar
  11. Harris, H. B., Johnson, B. J., Dobson, J. W., & Luttrel, E. S. (1964). Evaluation of anthracnose on grain sorghum. Crop Science, 4, 460–462.Google Scholar
  12. Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxova, M., & Lux, A. (2005). Application of silicon enhaced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123, 459–466.CrossRefGoogle Scholar
  13. Inanaga, S., & Okasaka, A. (1995). Calcium and silicon binding compounds in cell walls of rice shoots. Japanese Journal of Soil Science and Plant Nutrition, 41, 103–110.Google Scholar
  14. Kim, S. G., Kim, K. W., Park, E. W., & Choi, D. (2003). Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92, 1095–1103.CrossRefGoogle Scholar
  15. Korndörfer, G. H., Pereira, H. S., & Nolla, A. (2004). Análise de silício: solo, planta e fertilizante p. 24. Uberlândia, MG: Universidade Federal de Uberlândia (Boletim Técnico).Google Scholar
  16. Liberato, J. R. (2003). Desenvolvimento e avaliação do Software Quant para quantificação de doenças de plantas por análise de imagens. Viçosa, Brasil: Universidade Federal de Viçosa, Ph.D thesis.Google Scholar
  17. Lo, S. C., De Verdier, K., & Nicholson, R. L. (1999). Accumulation of 3-deoxyanthoxyanidin phytoalexins and resistance to Colletotrichum sublineolum in sorghum. Physiological and Molecular Plant Pathology, 55, 263–273.CrossRefGoogle Scholar
  18. Ma, J. F., & Takahashi, E. (2002). Soil, Fertilizer, and Plant Silicon Research in Japan (p. 274, 1st ed.). Amsterdam, The Netherlands: Elsevier Science.Google Scholar
  19. McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–218.Google Scholar
  20. Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.CrossRefGoogle Scholar
  21. Nicholson, R. L., Kollipara, S. S., Vincent, J. R., Lyons, V. P., & Cadena-Gomez, G. (1987). Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and non pathogenic fungi. Proceedings of the National Academy of Science of the USA, 84, 5520–5524.CrossRefGoogle Scholar
  22. Novais, R. F., Neves, J. C. L., & Barros, N. F. (1991). Ensaio em ambiente controlado. In A. L. Oliveira, W. E. Garrido, J. D. Araújo, & S. Lourenço (Eds.), Métodos de pesquisa em fertilidade do solo (pp. 153–189). Brasília, DF: EMBRAPA-SEA.Google Scholar
  23. Parlevliet, J. E. (1979). Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology, 17, 203–222.CrossRefGoogle Scholar
  24. Rodrigues, F. Á., Datnoff, L. E., Korndorfer, G. H., Seebold, K. W., & Rush, M. C. (2001a). Effect of silicon and host resistance on sheath blight development in rice. Plant Disease, 85, 827–832.CrossRefGoogle Scholar
  25. Rodrigues, F. Á., Jurick, W. M., Datnoff, L. E., Jones, J. B., & Rollins, J. A. (2005). Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 66, 144–159.CrossRefGoogle Scholar
  26. Rodrigues, F. Á., Korndörfer, G. H., Corrêa, G. F., Buki, G. B., Silva, O. A., & Datnoff, L. E. (2001b). Response of six gramineae species to application of calcium metasilicate. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Silicon in agriculture vol. 8, (p. 378). Amsterdam, The Netherlands: Elsevier Science B. V. Studies in Plant Science.Google Scholar
  27. Rodrigues, F. Á., Vale, F. X. R., Korndörfer, G. H., Prabhu, A. S., Datnoff, L. E., Oliveira, A. M. A., & Zambolim, L. (2003). Influence of silicon on sheath blight of rice in Brazil. Crop Protection, 22, 23–29.CrossRefGoogle Scholar
  28. Seebold, K. W., Kucharek, T. A., Datnoff, L. E., Correa-Victoria, F. J., & Marchetti, M. A. (2001). The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology, 91, 63–69.PubMedCrossRefGoogle Scholar
  29. Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67, 1051–1056.CrossRefGoogle Scholar
  30. Sherrif, C., Whelan, M. J., Arnold, G. M., & Bailey, J. A. (1995). rDNA sequence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycological Research, 99, 475–478.CrossRefGoogle Scholar
  31. Snyder, G. H., Jones, D. B., & Gaucho, G. J. (1986). Silicon fertilization of rice on Everglades Histosols. Soil Science Society of American Journal, 50, 1259–1263.CrossRefGoogle Scholar
  32. Sutton, B. C. (1980). The Coelomycetes: Fungi Imperfecti with Pycnidia, Acervuli and Stromata p. 696. Kew, London: Commonwealth Mycological Institute.Google Scholar
  33. Warren, H. L. (2000). Leaf anthracnose. In R. A. Frederiksen (Ed.), Compendium of sorghum diseases (pp. 10–11). St. Paul, MN: The American Phytopathological Society.Google Scholar
  34. Zadoks, J. C. (1971). Systems analysis and the dynamics of epidemics. Phytopathology, 61, 600–610.CrossRefGoogle Scholar

Copyright information

© KNPV 2009

Authors and Affiliations

  • Renata S. Resende
    • 1
  • Fabricio Á. Rodrigues
    • 1
  • Juliana M. Soares
    • 1
  • Carlos R. Casela
    • 2
  1. 1.Department of Plant Pathology, Laboratory of Host-Parasite InteractionViçosa Federal UniversityViçosaBrazil
  2. 2.EMBRAPA-Maize and Sorghum Research Center, Rod. MG 424 KM 45Sete LagoasBrazil

Personalised recommendations