Diverse Fusarium solani isolates colonise agricultural environments in Ethiopia

  • M. BogaleEmail author
  • E.T. Steenkamp
  • M.J. Wingfield
  • B.D. Wingfield


Fusarium solani is a fungal pathogen that infects many different genera of plants. It represents one of the two Fusarium spp. commonly isolated from agricultural soils and plant tissues in Ethiopia. To determine the diversity of F. solani in Ethiopia, we studied 43 isolates using Amplified Fragment Length Polymorphism (AFLP) and nucleotide sequences of the Translation Elongation Factor 1α (TEF-1α) and β-tubulin genes. TEF-1α sequences from GenBank, representing previously described species and clades of the F. solani-Haematonectria haematococca complex, were also included for comparative purposes. Phylogenetic analyses of the TEF-1α data separated the isolates into three groups corresponding with the three previously described clades (Clades 1–3) for this fungus. The Ethiopian isolates aggregated into one group corresponding to Clade 3. TEF-1α, β-tubulin and AFLPs further separated the Ethiopian isolates into a number of clusters and apparently novel phylogenetic lineages. Although the biological and ecological significance of these lineages and clusters is unclear, our data show that the Ethiopian agricultural environment is rich in species and lineages of the F. solani-H. haematococca complex.


AFLP β-tubulin Ethiopia Fusarium solani TEF-1α 



This study was financially supported by the Tree Protection Co-operative Programme (TPCP) of FABI, University of Pretoria, South Africa; the National Research Foundation (NRF), South Africa; and the Agricultural Research and Training Programme (ARTP) of the Ethiopian Agricultural Research Organization (EARO), Ethiopia. We thank Dr. Kerry O’Donnell of the United States Department of Agriculture (USDA) for kindly supplying some of the TEF-1α sequence information used in this study.


  1. Aoki, T., O’Donnell, K., Homma, Y., & Lattanzi, A. R. (2003). Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex—F. virguliforme in North America and F. tucumaniae in South America. Mycologia, 95, 660–684. doi: 10.2307/3761942.CrossRefGoogle Scholar
  2. Aoki, T., O’Donnell, K., & Scandiani, M. M. (2005). Sudden death syndrome of soybean in South America is caused by four species of Fusarium: Fusarium brasiliense sp. nov., F. cuneirostrum sp. nov., F. tucumaniae and F. virguliforme. Mycoscience, 46, 162–183. doi: 10.1007/s10267-005-0235-y.CrossRefGoogle Scholar
  3. Baayen, R. P., O’Donnell, K., Bonants, P. J. M., Cigelnik, E., Kroon, L. P. N. M., Roebroeck, E. J. A., & Waalwijk, C. (2000). Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and non-monophyletic formae speciales causing wilt and rot diseases. Phytopathology, 90, 891–900. doi: 10.1094/PHYTO.2000.90.8.891.PubMedCrossRefGoogle Scholar
  4. Bekele, E., & Karr, A. L. (1997). Fusarium head blight in Ethiopian wheat and the identification of species causing the disease. Pest Management Journal of Ethiopia, 1, 29–36.Google Scholar
  5. Bogale, M., Wingfield, B. D., Wingfield, M. J., & Steenkamp, E. T. (2006). Characterization of Fusarium oxysporum isolates from Ethiopia using AFLP, SSR and DNA sequence analyses. Fungal Diversity, 23, 51–66.Google Scholar
  6. Burgess, L. W., Summerell, B. A., Bullock, S., Gott, K. P., & Backhouse, D. (1994). Laboratory manual for fusarium research (3rd ed.). Sydney: Fusarium Research Laboratory.Google Scholar
  7. Covert, S. F., Aoki, T., O’Donnell, K., Starkey, D., Holliday, A., Geiser, D. M., et al. (2007). Sexual reproduction in the soybean sudden death syndrome pathogen Fusarium tucumaniae. Fungal Genetics and Biology, 44, 799–807. doi: 10.1016/j.fgb.2006.12.009.PubMedCrossRefGoogle Scholar
  8. Edel, V., Steinberg, C., Gautheron, N., & Alabouvette, C. (1997). Populations of nonpathogenic Fusarium oxysporum associated with roots of four plant species compared to soil borne populations. Phytopathology, 87, 693–697. doi: 10.1094/PHYTO.1997.87.7.693.PubMedCrossRefGoogle Scholar
  9. Fandohan, P., Hell, K., Marasas, W. F. O., & Wingfield, M. J. (2003). Infection of maize by Fusarium species and contamination with fumonisins in Africa. African Journal of Biotechnology, 2, 570–579.Google Scholar
  10. Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.PubMedGoogle Scholar
  11. Godoy, P., Cano, J., Gené, J., Guarro, J., Höfling-Lima, A. L., & Colombo, A. L. (2004). Genotyping of 44 isolates of Fusarium solani, the main agent of fungal keratitis in Brazil. Journal of Clinical Microbiology, 42, 4494–4497. doi: 10.1128/JCM.42.10.4494-4497.2004.PubMedCrossRefGoogle Scholar
  12. Gordon, T. R., Okamoto, D., & Milgroome, M. G. (1992). The structure and interrelationship of fungal populations in native and cultivated soils. Molecular Ecology, 1, 241–249. doi: 10.1111/j.1365-294X.1992.tb00183.x.CrossRefGoogle Scholar
  13. Hawthorne, B. T., Rees-George, J., & Boradhurst, P. G. (1992). Mating behavior and pathogenicity of New Zealand isolates of Nectria haematococca (Fusarium solani). New Zealand Journal of Crop and Horticultural Science, 20, 51–57.Google Scholar
  14. Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analyses. Systematic Biology, 42, 182–192. doi: 10.2307/2992540.Google Scholar
  15. Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid Multiple sequence Alignment based on Fast Fourier Transform. Nucleic Acids Research, 30, 3059–3066. doi: 10.1093/nar/gkf436.PubMedCrossRefGoogle Scholar
  16. Kolattukudy, P. E., & Gamble, D. L. (1995). Nectria haematococca. Pathogenesis and host specificity in plant diseases. Vol II Eukaryotes. In K. Kohmoto, U. S. Singh, & R. P. Singh (Eds.), Pathogenesis and host specificity in plant pathogenic fungi and nematodes (pp. 83–102). UK: Pergamon.Google Scholar
  17. Kosman, E., & Leonard, J. (2005). Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Molecular Ecology, 14, 415–424. doi: 10.1111/j.1365-294X.2005.02416.x.PubMedCrossRefGoogle Scholar
  18. Kumar, S., Tamura, K., Jacobsen, I. B., & Nei, M. (2001). MEGA 2: Molecular evolutionary genetics analysis software. Arizona: State University.Google Scholar
  19. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Blackwell.Google Scholar
  20. Li, D., Chung, K. R., Smith, D. A., & Schardl, C. L. (1995). The Fusarium solani gene encoding kievitone hydratase, a secreted enzyme that catalyzes detoxification of a bean phytoalexin. Molecular Plant-Microbe Interactions, 8, 388–397.PubMedGoogle Scholar
  21. Majer, D., Mithen, R., Lewis, B. G., Vos, P., & Oliver, R. P. (1996). The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycological Research, 100, 1107–1111.CrossRefGoogle Scholar
  22. Matuo, T., & Snyder, W. C. (1973). Use of morphology and mating populations in the identification of formae speciales in Fusarium solani. Phytopathology, 63, 562–565.Google Scholar
  23. May, G. S., Tsang, M. L. -S., Smith, S., Fidel, S., & Morris, N. R. (1987). Aspergillus nidulans β-tubulin genes are unusually divergent. Gene, 55, 231–243. doi: 10.1016/0378-1119(87)90283-6.PubMedCrossRefGoogle Scholar
  24. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325. doi: 10.1093/nar/8.19.4321.PubMedCrossRefGoogle Scholar
  25. Nash, S. M., & Snyder, W. C. (1962). Quantitative estimations by plate counts of propagules of the bean root rot of Fusarium species in field soils. Phytopathology, 52, 567–572.Google Scholar
  26. Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: An illustrated manual of identification. University Park: Pennsylvania State University Press.Google Scholar
  27. O’Donnell, K. (2000). Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia, 92, 919–938. doi: 10.2307/3761588.CrossRefGoogle Scholar
  28. O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95, 2044–2049. doi: 10.1073/pnas.95.5.2044.PubMedCrossRefGoogle Scholar
  29. O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C., & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41, 600–623. doi: 10.1016/j.fgb.2004.03.003.PubMedCrossRefGoogle Scholar
  30. Rossman, A. Y., Samuels, G. J., Rogerson, C. T., & Lowen, R. (1999). Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Studies in Mycology, 42, 1–248.Google Scholar
  31. Sneath, P. A., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: W.H. Freeman.Google Scholar
  32. Swofford, D. L. (2002). PAUP, Phylogenetic Analysis Using Parsimony version 4. Massachusetts: Sinauer Associates.Google Scholar
  33. Toussoun, T. A., & Snyder, W. C. (1961). The pathogenicity, distribution and control of two races of Fusarium (Hypomyces) solani f.sp. cucurbitae. Phytopathology, 51, 17–22.Google Scholar
  34. Van Etten, H. D. (1978). Identification of additional habitats of Nectria haematococca mating population VI. Phytopathology, 68, 1552–1556.CrossRefGoogle Scholar
  35. Van Etten, H. D., & Kistler, H. C. (1988). Nectria haematococca, mating populations I and VI. Advances in Plant Pathology, 6, 189–206.Google Scholar
  36. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414. doi: 10.1093/nar/23.21.4407.PubMedCrossRefGoogle Scholar
  37. Windels, C. E. (1991). Current status of Fusarium taxonomy. Phytopathology, 81, 1048–1051.Google Scholar
  38. Zhang, N., O’Donnell, K., Sutton, D. A., Nalim, F. A., Summerbell, R. C., Padhye, A. A., et al. (2006). Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. Journal of Clinical Microbiology, 44, 2186–2190. doi: 10.1128/JCM.00120-06.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2009

Authors and Affiliations

  • M. Bogale
    • 1
    Email author
  • E.T. Steenkamp
    • 2
  • M.J. Wingfield
    • 2
  • B.D. Wingfield
    • 1
  1. 1.Department of Genetics, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations