European Journal of Plant Pathology

, Volume 124, Issue 2, pp 349–352 | Cite as

Host range and properties of Tomato chlorotic dwarf viroid

  • Yosuke Matsushita
  • Tomio Usugi
  • Shinya TsudaEmail author


We characterised the host range and physical properties of Tomato chlorotic dwarf viroid. Among the 46 plant species inoculated with the viroid, two in the family Compositae and 23 in the family Solanaceae were found to be systemic hosts. The viroids in the crude sap from diseased tomato plants were thermally inactivated by heating to 100°C for at least 40 min. These viroids also lost their infectivity when diluted in phosphate buffer to at least 10−6, or after 3 days of incubation at room temperature. However, the infectivity of the viroids in dried crude sap from the plants persisted throughout the 50-day test period.


Disease Infection Pospiviroid TCDVd Thermal inactivation Tomato 



We are grateful to S. Matsuura, the Hiroshima Prefectural Agriculture Research Centre, for helpful comments and discussion. This study was supported, in part, by a Grant-in-Aid from The Research Project for Utilizing Advanced Technologies in Agriculture, Forestry and Fisheries, administered by the Ministry of Agriculture, Forestry and Fisheries in Japan.


  1. Barbosa, C. J., Pina, J. A., Perez-Panades, J., Brenad, L., Serra, P., Navarro, L., et al. (2005). Mechanical transmission of citrus viroids. Plant Disease, 89, 749–754. doi: 10.1094/PD-89-0749.CrossRefGoogle Scholar
  2. Diener, O. T., & Raymer, B. W. (1969). Potato spindle tuber virus: a plant virus with properties of a free nucleic acid II. Characterization and partial purification. Virology, 37, 351–366. doi: 10.1016/0042-6822(69)90219-0.PubMedCrossRefGoogle Scholar
  3. Diener, O. T., Smith, D. R., & O’Brien, M. J. (1972). Potato spindle tuber viroid. VII. Susceptibility of several solanaceous plant species to infection with low molecular-weight RNA. Virology, 48, 844–846. doi: 10.1016/0042-6822(72)90166-3.PubMedCrossRefGoogle Scholar
  4. James, T., Mulholland, V., Jeffries, C., & Chard, J. (2008). First report of Tomato chlorotic dwarf viroid infecting commercial petunia stocks in the United Kingdom. Plant Pathology, 57, 400. doi: 10.1111/j.1365-3059.2007.01727.x.CrossRefGoogle Scholar
  5. Manzer, F. E., & Merriam, D. (1961). Field transmission of the Potato spindle tuber virus and virus X by cultivating and hilling equipment. American Potato Journal, 38, 346–352. doi: 10.1007/BF02862243.CrossRefGoogle Scholar
  6. Matsushita, Y., Tsukiboshi, T., Ito, Y., & Chikuo, Y. (2007). Nucleotide sequences and distribution of Chrysanthemum stunt viroid in Japan. Journal of the Japanese Society for Horticultural Science, 76, 333–337. doi: 10.2503/jjshs.76.333.CrossRefGoogle Scholar
  7. Matsushita, Y., Kanda, A., Usugi, T., & Tsuda, S. (2008). First report of a Tomato chlorotic dwarf viroid disease on tomato plants in Japan. Journal of General Plant Pathology, 74, 182–184. doi: 10.1007/s10327-008-0076-6.CrossRefGoogle Scholar
  8. Singh, R. P., & Bagnall, R. H. (1968). Solanum rostratum Dunal., a new test plant for the Potato spindle tuber virus. American Potato Journal, 45, 335–336. doi: 10.1007/BF02849770.CrossRefGoogle Scholar
  9. Singh, R. P., & Dilworth, A. D. (2008). Tomato chlorotic dwarf viroid in the ornamental plant Vinca minor and its transmission through tomato seed. European Journal of Plant Pathology. doi: 10.1007/s10658-008-9344-8.
  10. Singh, R. P., Nie, X., & Singh, M. (1999). Tomato chlorotic dwarf viroid: an evolutionary link in the origin of pospiviroids. The Journal of General Virology, 80, 2823–2828.PubMedGoogle Scholar
  11. Singh, R. P., Ready, K. F. M., & Nie, X. (2003). Biology. In A. Hadidi, R. Flores, J. W. Randles, & J. S. Semancik (Eds.), Viroids (pp. 30–48). Melbourne, Australia: CSIRO.Google Scholar
  12. Singh, R. P., Dilworth, A. D., Baranwal, V. K., & Gupta, K. N. (2006). Detection of Citrus exocortis viroid, Iresine viroid, and Tomato chlorotic dwarf viroid in new ornamental host plants in India. Plant Disease, 90, 1457. doi: 10.1094/PD-90-1457A.CrossRefGoogle Scholar
  13. Verhoeven, J. T. J., Jansen, C. C. C., & Willemen, T. M. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831. doi: 10.1007/s10658-004-2493-5.CrossRefGoogle Scholar
  14. Verhoeven, J. T. J., Jansen, C. C. C., & Willemen, T. M. (2007). First report of Tomato chlorotic dwarf viroid in Petunia hybrida from the United States of America. Plant Disease, 91, 324–324. doi: 10.1094/PDIS-91-3-0324B.CrossRefGoogle Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  1. 1.National Agricultural Research CenterTsukubaJapan
  2. 2.National Institute of Floricultural ScienceTsukubaJapan

Personalised recommendations