European Journal of Plant Pathology

, Volume 124, Issue 2, pp 261–268 | Cite as

Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones

  • Yandong Pang
  • Xiaoguang Liu
  • Yingxin Ma
  • Leonid Chernin
  • Gabriele Berg
  • Kexiang Gao
Article

Abstract

Quorum sensing regulation, mediated by N-acyl homoserine lactone signals, produced by strain Serratia plymuthica HRO-C48 isolated from the rhizosphere of oilseed rape, was found to be responsible for this strain’s ability to produce the broad spectrum antibiotic pyrrolnitrin. In this study, we have shown that some other biocontrol-related traits of strain HRO-C48, such as protection of cucumbers against Pythium apahnidermatum damping-off disease, induced systemic resistance to Botrytis cinerea grey mold in bean and tomato plants, and that colonisation of the rhizosphere also depends on AHL signalling. The results prove that quorum sensing regulation may be generally involved in interactions between plant-associated bacteria, fungal pathogens and host plants.

Keywords

Antifungal activity Botrytis cinerea Pythium aphanidermatum Quorum sensing 

Abbreviations

AHLs

N-acyl-homoserine lactones

ISR

induced systemic resistance

PGPR

plant growth-promoting rhizobacteria

QS

quorum sensing

VOCs

volatile organic compounds

BCA

biocontrol agent

References

  1. Bauer, W. D., & Mathesius, U. (2004). Plant responses to bacterial quorum sensing signals. Current Opinion in Plant Biology, 7, 429–433. doi:10.1016/j.pbi.2004.05.008.PubMedCrossRefGoogle Scholar
  2. Benhamou, N., Gagné, S., Le Quéré, D., & Dehbi, L. (2000). Bacterial-mediated induced resistance in cucumber : beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology, 90, 45–56. doi:10.1094/PHYTO.2000.90.1.45.PubMedCrossRefGoogle Scholar
  3. Berg, G. (2000). Diversity of antifungal and plant-associated Serratia plymuthica strains. Journal of Applied Microbiology, 88, 952–960. doi:10.1046/j.1365-2672.2000.01064.x.PubMedCrossRefGoogle Scholar
  4. Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., & Hallmann, J. (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51, 215–229. doi:10.1016/j.femsec.2004.08.006.PubMedCrossRefGoogle Scholar
  5. Chet, I., & Chernin, L. (2002). Biocontrol, Microbial agents in soil. In G. Bitton (Ed.), Encyclopedia of Environmental Microbiology (pp. 450–465). New York: Willey & Sons Inc.Google Scholar
  6. Chin-A-Woeng, T. F. C., Bloemberg, G. V., & Lugtenberg, B. J. J. (2003). Phenazines and their role in biocontrol by Pseudomonas bacteria. The New Phytologist, 157, 503–523. doi:10.1046/j.1469-8137.2003.00686.x.CrossRefGoogle Scholar
  7. de Vleeschauwer, D., & Höfte, M. (2007). Using Serratia plymuthica to control fungal pathogens of plant. CAB Reviews, 2, 046.Google Scholar
  8. Fekete, A., Frommberger, M., Rothballer, M., Li, X., Englmann, M., Fekete, J., et al. (2007). Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Analytical and Bioanalytical Chemistry, 387, 455–467. doi:10.1007/s00216-006-0970-8.PubMedCrossRefGoogle Scholar
  9. Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G., & Bahl, H. (2001). Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archives of Microbiology, 176, 421–426. doi:10.1007/s002030100347.PubMedCrossRefGoogle Scholar
  10. Heungens, K., & Parke, J. L. (2000). Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.). Applied and Environmental Microbiology, 66, 5192–5200. doi:10.1128/AEM.66.12.5192-5200.2000.PubMedCrossRefGoogle Scholar
  11. Kai, M., Effmert, U., Berg, G., & Piechulla, B. (2007). Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 187, 351–360. doi:10.1007/s00203-006-0199-0.PubMedCrossRefGoogle Scholar
  12. Kalbe, C., Marten, P., & Berg, G. (1996). Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiological Research, 151, 433–439.PubMedGoogle Scholar
  13. Kurze, S., Dahl, R., Bahl, H., & Berg, G. (2001). Biological control of soil-borne pathogens in strawberry by Serratia plymuthica HRO-C48. Plant Disease, 85, 529–534. doi:10.1094/PDIS.2001.85.5.529.CrossRefGoogle Scholar
  14. Landa, B. B., Mavrodi, O. V., Raaijmakers, J. M., McSpadden Gardener, B. B., Thomashow, L. S., & Weller, D. M. (2002). Differential ability of genotypes of 2,4-diacetylphloroglucinol- producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Applied and Environmental Microbiology, 68, 3226–3237. doi:10.1128/AEM.68.7.3226-3237.2002.PubMedCrossRefGoogle Scholar
  15. Liu, X., de Bore, W., Berg, G., & Chernin, L. (2004). N-acyl homoserine lactones produced by strains of Collimonas, Herbaspirillum, and Serratia species (Poster presented at the ASM Conference on Cell-Cell Communication in Bacteria, Banff, Alberta, Canada)Google Scholar
  16. Liu, X., Bimerew, M., Ma, Y., Muller, H., Ovadis, M., Eberl, L., et al. (2007). Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiology Letters, 270, 299–305. doi:10.1111/j.1574-6968.2007.00681.x.PubMedCrossRefGoogle Scholar
  17. Loh, J., Pierson, E. A., Pierson III, L. S., Stacey, G., & Chatterjee, A. (2002). Quorum sensing in plant-associated bacteria. Current Opinion in Plant Biology, 5, 285–290. doi:10.1016/S1369-5266(02)00274-1.PubMedCrossRefGoogle Scholar
  18. Ma, Y., Liu, X., Gao, K., Qin, N., Pang, Y., & Shi, C. (2007). Preliminary study on biocontrol potential of rhizobacterium Serratia plymuthica HRO-C48. Journal of Yunnan Agricultural University, 22, 49–53.Google Scholar
  19. McCullagh, M., Utkhede, R., Menzies, J. G., Punja, Z. K., & Paulitz, T. C. (1996). Evaluation of plant growth-promoting rhizobacteria for biological control of Pythium root rot of cucumbers grown in rockwool and effects on yield. European Journal of Plant Pathology, 102, 747–755. doi:10.1007/BF01877149.CrossRefGoogle Scholar
  20. Meziane, H., van der Sluis, I., van Loon, L. C., Höfte, M., & Bakker, P. A. H. M. (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathology, 6, 177–185. doi:10.1111/j.1364-3703.2005.00276.x.CrossRefGoogle Scholar
  21. Navazio, L., Aldan, B., Moscatiello, R., Zuppani, A., Woo, S. L., Mariani, P., et al. (2007). Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biology, 30, 41. doi:10.1186/1471-2229-7-41.CrossRefGoogle Scholar
  22. Ovadis, M., Liu, X., Gavriel, S., Ismailov, Z., Chet, I., & Chernin, L. (2004). The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. Journal of Bacteriology, 186, 4986–4993. doi:10.1128/JB.186.15.4986-4993.2004.PubMedCrossRefGoogle Scholar
  23. Persello-Carteaux, F., Nussaume, L., & Robaglia, C. (2003). Tales from the underground: molecular plant–rhizobacteria interactions. Plant, Cell & Environment, 26, 189–199. doi:10.1046/j.1365-3040.2003.00956.x.CrossRefGoogle Scholar
  24. Pierson III, L. S., Wood, D. W., & Pierson, E. A. (1998). Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annual Review of Phytopathology, 36, 207–225. doi:10.1146/annurev.phyto.36.1.207.PubMedCrossRefGoogle Scholar
  25. Sarniguet, A., Kraus, J., Henkels, M. D., Muehlchen, A. M., & Loper, J. E. (1995). The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proceedings of the National Academy of Sciences of the United States of America, 92, 12255–12259. doi:10.1073/pnas.92.26.12255.PubMedCrossRefGoogle Scholar
  26. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., et al. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant, Cell & Environment, 29, 909–918. doi:10.1111/j.1365-3040.2005.01471.x.CrossRefGoogle Scholar
  27. Siddiqui, I. A., & Shaukat, S. S. (2005). Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives. Journal of Applied Microbiology, 98, 43–55. doi:10.1111/j.1365-2672.2004.02457.x.PubMedCrossRefGoogle Scholar
  28. Steidle, A., Allesen-Holm, M., Riedel, K., Berg, G., Givskov, M., Molin, S., et al. (2002). Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Applied and Environmental Microbiology, 68, 6371–6382. doi:10.1128/AEM.68.12.6371-6382.2002.PubMedCrossRefGoogle Scholar
  29. Tran, H., Ficke, A., Asiimwe, T., Höfte, M., & Raaijmakers, J. M. (2007). Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. The New Phytologist, 175, 731–742. doi:10.1111/j.1469-8137.2007.02138.x.PubMedCrossRefGoogle Scholar
  30. van Houdt, R., Givskov, M., & Michiels, C. W. (2007). Quorum sensing in Serratia. FEMS Microbiology Reviews, 31, 407–424. doi:10.1111/j.1574-6976.2007.00071.x.PubMedCrossRefGoogle Scholar
  31. van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254. doi:10.1007/s10658-007-9165-1.CrossRefGoogle Scholar
  32. Waters, C. M., & Bassler, B. K. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346. doi:10.1146/annurev.cellbio.21.012704.131001.PubMedCrossRefGoogle Scholar
  33. Yan, Z., Reddy, M. S., & Kloepper, J. W. (2003). Survival and colonization of rhizobacteria in a tomato transplant system. Canadian Journal of Microbiology, 49, 383–389. doi:10.1139/w03-051.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • Yandong Pang
    • 1
  • Xiaoguang Liu
    • 1
  • Yingxin Ma
    • 2
  • Leonid Chernin
    • 3
  • Gabriele Berg
    • 4
  • Kexiang Gao
    • 2
  1. 1.Institute of Life SciencesJiangsu UniversityZhenjiangChina
  2. 2.Department of Plant PathologyShandong Agricultural UniversityTaianChina
  3. 3.The Otto Warburg Centre for Agriculture BiotechnologyHebrew University of JerusalemRehovotIsrael
  4. 4.Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria

Personalised recommendations