Molecular characterisation of Turnip mosaic virus isolates from Brassicaceae weeds

  • Shirin Farzadfar
  • Yasuhiro Tomitaka
  • Mutsumi Ikematsu
  • Ali Reza Golnaraghi
  • Reza Pourrahim
  • Kazusato Ohshima


Eight provinces of Iran were surveyed during 2003–2008 to find Brassicaceae reservoir weed hosts of Turnip mosaic virus (TuMV). A total of 532 weed samples were collected from plants with virus-like symptoms. The samples were tested for the presence of TuMV by enzyme-linked immunosorbent assay using specific antibodies. Among those tested, 340 samples (64%) were found to be infected with TuMV. Rapistrum rugosum, Sisymberium loeselii, S. irio and Hirschfeldia incana were identified as the Brassicaceae weed hosts of TuMV, and the former two plant species were found to be the most important weed hosts for the virus in Iran. The full-length sequences of the genomic RNAs of IRN TRa6 and IRN SS5 isolates from R. rugosum and S. loeselii were determined. No evidence of recombination was found in both isolates using different recombination-detecting programmes. Phylogenetic analyses of the weed isolates with representative isolates from the world showed that the IRN TRa6 and IRN SS5 isolates fell into an ancestral basal-Brassica group. This study shows for the first time the wide distribution and phylogenetic relationships of TuMV from weeds in the mid-Eurasia of Iran.


Turnip mosaic virus Brassicaceae Weeds Iran Evolution Phylogeny 



We are grateful to S. Sajedi, Botanic Department of Plant Pests and Diseases Research Institute (PPDRI), Iran, for identification of weed species, to Dr. S. Korkmaz, Department of Plant Protection, Faculty of Agriculture, University of Canakkale Onsekiz Mart, Turkey, for preparing some seeds used in the study, and to Prof. U. Melcher, Department of Biochemistry and Molecular Biology, Oklahoma State University, USA, for his kindly reading the manuscript. This work was supported by a grant from PPDRI of Iran and Grant-in-Aid for Scientific Research (B) No. 18405022 from the Japan Society for the Promotion of Science.


  1. Clark, M. F., & Adams, A. M. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. The Journal of General Virology, 34, 475–483. doi: 10.1099/0022-1317-34-3-475.PubMedCrossRefGoogle Scholar
  2. Dayhoff, M. O., Barker, W. C., & Hunt, L. T. (1983). Establishing homologies in protein sequences. Methods in Enzymology, 91, 524–545. doi: 10.1016/S0076-6879(83)91049-2.PubMedCrossRefGoogle Scholar
  3. Farzadfar, S., Ohshima, K., Pourrahim, R., Golnaraghi, A. R., Jalali, S., & Ahoonmanesh, A. (2005). Occurrence of Turnip mosaic virus on ornamental crops in Iran. Plant Pathology, 54, 261. doi: 10.1111/j.1365-3059.2004.01148.x.CrossRefGoogle Scholar
  4. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., & Ball, L. A. (2005). Virus taxonomy: Classification and nomenclature of viruses, eighth report of the international committee on taxonomy of viruses. San Diego: Elsevier Academic.Google Scholar
  5. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution; International Journal of Organic Evolution, 39, 783–791. doi: 10.2307/2408678.Google Scholar
  6. Felsenstein, J. (1993). PHYLIP (Phylogeny interference package), Version 3.5. Department of Genetics, University of Washington, Seattle.Google Scholar
  7. Gibbs, M. J., Armstrong, J. S., & Gibbs, A. J. (2000). Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics (Oxford, England), 16, 573–582. doi: 10.1093/bioinformatics/16.7.573 Google Scholar
  8. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  9. Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174. doi: 10.1007/BF02101694.PubMedCrossRefGoogle Scholar
  10. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G., & Gibson, T. J. (1998). Multiple sequence alignment with Clustal X. Trends in Biochemical Sciences, 23, 403–405. doi: 10.1016/S0968-0004(98)01285-7.PubMedCrossRefGoogle Scholar
  11. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. doi: 10.1007/BF01731581.PubMedCrossRefGoogle Scholar
  12. Korkmaz, S., Tomitaka, Y., Onder, S., & Ohshima, K. (2008). Occurrence and molecular characterization of Turkish isolates of Turnip mosaic virus. Plant Pathology. doi:10.1111/j.1365-3059.2008.01902.x.Google Scholar
  13. Kozubek, E., Irzykowski, W., & Lehmann, P. (2007). Genetic and molecular variability of a Turnip mosaic virus population from horseradish (Cochlearia armoracia L.). Journal of Applied Genetics, 48(3), 295–306.PubMedGoogle Scholar
  14. Martin, D., & Rybicki, E. (2000). RDP: detection of recombination amongst aligned sequences. Bioinformatics (Oxford, England), 16, 562–563. doi: 10.1093/bioinformatics/16.6.562.CrossRefGoogle Scholar
  15. Martin, D., Williamson, C., & Posada, D. (2005). RDP2: recombination detection and analysis from sequence alignment. Bioinformatics (Oxford, England), 21, 260–262. doi: 10.1093/bioinformatics/bth490.CrossRefGoogle Scholar
  16. Maynard Smith, J. (1992). Analyzing the mosaic structure of genes. Journal of Molecular Evolution, 34, 126–129.Google Scholar
  17. Ogawa, T., Tomitaka, Y., Nakagawa, A., & Ohshima, K. (2008). Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus Research, 131, 199–212. doi: 10.1016/j.virusres.2007.09.010.PubMedCrossRefGoogle Scholar
  18. Ohshima, K., Tomitaka, Y., Wood, J. T., Minematsu, Y., Kajiyama, H., Tomimura, K., et al. (2007). Patterns of recombination in Turnip mosaic virus genomic sequences indicate hotspots of recombination. The Journal of General Virology, 88, 298–315. doi: 10.1099/vir.0.82335-0.PubMedCrossRefGoogle Scholar
  19. Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamoto, T., Tomimura, K., Tan, Z., et al. (2002). Molecular evolution of Turnip mosaic virus; evidence of host adaptation, genetic recombination and geographical spread. The Journal of General Virology, 83, 1511–1521.PubMedGoogle Scholar
  20. Page, R. D. M. (1996). TreeView: an application to display phylogenetic trees on personal computer. Computer Applications in the Biosciences, 12, 357–358.PubMedGoogle Scholar
  21. Posada, D., & Crandall, K. A. (2001). Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proceedings of the National Academy of Sciences of the United States of America, 98, 13757–13762. doi: 10.1073/pnas.241370698.PubMedCrossRefGoogle Scholar
  22. Provvidenti, R. (1996). Turnip mosaic potyvirus. In A. A. Brunt, K. Crabtree, M. J. Dallwitz, A. J. Gibbs, & L. Watson (Eds.), Viruses of plants (pp. 1340–1343). Wallingford: CAB International.Google Scholar
  23. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.PubMedGoogle Scholar
  24. Salminen, M. O., Carr, J. K., Burke, D. S., & McCutchan, F. E. (1995). Identification of breakpoints in intergenotypic recombinants of HIV type 1 by Bootscanning. AIDS Research and Human Retroviruses, 11, 1423–1425.PubMedCrossRefGoogle Scholar
  25. Sawyer, S. A. (1999). GENECONV: A computer package for the statistical detection of gene conversion. Distributed by the author. Department of Mathematics, Washington University in St. Louis, available at
  26. Strimmer, K., & von Haeseler, A. (1996). Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Molecular Biology and Evolution, 13, 964–969.Google Scholar
  27. Strimmer, K., Goldman, N., & von Haeseler, A. (1997). Bayesian probabilities and quartet puzzling. Molecular Biology and Evolution, 14, 210–211.Google Scholar
  28. Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A., & Ohshima, K. (2003). The phylogeny of Turnip mosaic virus; comparisons of thirty-eight genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Molecular Ecology, 12, 2099–2111. doi: 10.1046/j.1365-294X.2003.01881.x.PubMedCrossRefGoogle Scholar
  29. Tomimura, K., Spak, J., Katis, N., Jenner, C. E., Walsh, J. A., Gibbs, A. J., et al. (2004). Comparisons of the genetic structure of populations of Turnip mosaic virus in west and east Eurasia. Virology, 330, 408–423. doi: 10.1016/j.virol.2004.09.040.PubMedCrossRefGoogle Scholar
  30. Tomlinson, J. A. (1987). Epidemiology and control of virus diseases of vegetables. The Annals of Applied Biology, 110, 661–681. doi: 10.1111/j.1744-7348.1987.tb04187.x.CrossRefGoogle Scholar
  31. Urcuqui-Inchima, S., Haenni, A-L., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74, 157–175. doi: 10.1016/S0168-1702(01)00220-9.PubMedCrossRefGoogle Scholar
  32. Walsh, J. A., & Jenner, C. E. (2002). Turnip mosaic virus and the quest for durable resistance. Molecular Plant Pathology, 3, 289–300. doi: 10.1046/j.1364-3703.2002.00132.x.CrossRefGoogle Scholar
  33. Weiller, G. F. (1998). Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Molecular Biology and Evolution, 15, 326–335.PubMedGoogle Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • Shirin Farzadfar
    • 1
  • Yasuhiro Tomitaka
    • 2
  • Mutsumi Ikematsu
    • 2
  • Ali Reza Golnaraghi
    • 3
  • Reza Pourrahim
    • 1
  • Kazusato Ohshima
    • 2
  1. 1.Department of Plant VirologyPlant Pests and Diseases Research InstituteTehranIran
  2. 2.Laboratory of Plant Virology, Faculty of AgricultureSaga UniversitySagaJapan
  3. 3.Department of Plant Protection, College of Agriculture and Natural Resources, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations