Advertisement

European Journal of Plant Pathology

, Volume 124, Issue 1, pp 1–7 | Cite as

Modelling the progress of Asiatic citrus canker on Tahiti lime in relation to temperature and leaf wetness

  • R. S. C. Christiano
  • M. Dalla Pria
  • W. C. Jesus Junior
  • L. Amorim
  • A. Bergamin Filho
Article

Abstract

The combined effect of temperature (15°C, 20°C, 25°C, 30°C, 35°C, 40°C and 42°C) and leaf wetness duration (0, 4, 8 12, 16, 20 and 24 h) on infection and development of Asiatic citrus canker (Xanthomonas citri subsp. citri) on Tahiti lime plant was examined in growth chambers. No disease developed at 42°C and zero hours of leaf wetness. Periods of leaf wetness as short as 4 h were sufficient for citrus canker infection. However, a longer leaf duration wetness (24 h) did not result in much increase in the incidence of citrus canker, but led to twice the number of lesions and four times the disease severity. Temperature was the greatest factor influencing disease development. At optimum temperatures (25–35°C), there was 100% disease incidence. Maximum disease development was observed at 30–35°C, with up to a 12-fold increase in lesion density, a 10-fold increase in lesion size and a 60-fold increase in disease severity.

Keywords

Xanthomonas Citrus latifolia Monomolecular Generalised beta Moisture Epidemiology 

Notes

Acknowledgements

This work was supported by FAPESP (Brazil). We thank Dr. Júlio Rodrigues Neto (Instituto Biologico, Campinas, SP, Brazil) for supplying the isolate IBSBF 1421.

References

  1. Anonymous (2007a). Brazil Agrianual 2007. São Paulo: AgraFNP.Google Scholar
  2. Anonymous (2007b). Fruit and tree nuts: situation and outlook yearbook. Economic Research Service, USDA. Retrieved January, 29 2007, http://www.ers.usda.gov/publications/FTS/2007/Yearbook/FTS2007.pdf
  3. Bergamin Filho, A., & Hughes, G. (2000). Citrus canker epidemiology — methodologies and approaches: a moderated discussion session. Proceedings, International Citrus Canker Research Workshop (pp. 24–25). Ft. Pierce, Florida.Google Scholar
  4. Bergamin Filho, A., Amorim, L., Gottwald, T. R., & Laranjeira, F. F. (2001). Spatial distribution of citrus canker in São Paulo - Brazil. Proceedings of the 8th International Workshop on Plant Disease Epidemiology. (pp. 28–29). Ouro Preto, Brazil.Google Scholar
  5. Bergamin Filho, A., Amorim, L., Laranjeira, F., & Gottwald, T. R. (2000). Epidemiology of citrus canker in Brazil with and without the Asian citrus leafminer. Proceedings, International Citrus Canker Research Workshop (pp. 6). Ft. Pierce, Florida.Google Scholar
  6. Bock, C. H., Parker, P. E., & Gottwald, T. R. (2005). Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees. Plant Disease, 89, 71–80. doi: 10.1094/PD-89-0071.CrossRefGoogle Scholar
  7. Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley.Google Scholar
  8. Christiano, R. S. C., Dalla Pria, M., Jesus Junior, W. C., Amorim, L., & Bergamin Filho, A. (2006). Effect of citrus leaf-miner damage, mechanical damage and inoculum concentration on severity of symptoms of Asiatic citrus canker in Tahiti lime. Crop Protection (Guildford, Surrey), 26, 59–65. doi: 10.1016/j.cropro.2006.03.016.CrossRefGoogle Scholar
  9. Dalla Pria, M., Christiano, R. C. S., Furtado, E. L., Amorim, L., & Bergamin Filho, A. (2006). Effect of temperature and leaf wetness duration on infection of sweet oranges by Asiatic citrus canker. Plant Pathology, 55, 657–663. doi: 10.1111/j.1365-3059.2006.01393.x.CrossRefGoogle Scholar
  10. Danos, E., Berger, R. D., & Stall, R. E. (1984). Temporal and spatial spread of citrus canker within groves. Phytopathology, 74, 904–908.CrossRefGoogle Scholar
  11. Gabriel, D. W., Kingsley, M. T., Hunter, J. E., & Gottwald, T. (1989). Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) to species and reclassification of all X. campestris pv. citri strains. International Journal of Systematic Bacteriology, 39, 14–22.CrossRefGoogle Scholar
  12. Goto, M. (1992). Citrus canker. In J. Kumar, H. S. Chaube, U. S. Singh, & A. N. Mukhopadhyay (Eds.), Plant diseases of international importance (pp. 250–269). Englewood Cliff: Prentice-Hall.Google Scholar
  13. Goto, M., & Hyodo, H. (1985). Role of extracellular polysaccharides of Xanthomonas campestris pv. citri in the early stage of infection. Annals of the Phytopathological Society of Japan, 51, 22–31.Google Scholar
  14. Gottwald, T. R., & Graham, J. H. (1992). A device for precise and non disruptive stomatal inoculation of leaf tissue with bacterial pathogens. Phytopathology, 82, 930–935. doi: 10.1094/Phyto-82-930.CrossRefGoogle Scholar
  15. Gottwald, T. R., & Timmer, L. W. (1995). The efficacy of windbreaks in reducing the spread of citrus canker caused by Xanthomonas campestris pv. citri. Tropical agriculturist, 72, 194–201.Google Scholar
  16. Gottwald, T. R., Graham, J. H., & Schubert, T. S. (1997). Citrus canker in urban Miami: an analysis of spread and prognosis for the future. Citrus Industry, 78, 72–78.Google Scholar
  17. Gottwald, T. R., Graham, J. H., & Schubert, T. S. (2002). Citrus canker: The pathogen and its impact. Plant Health Progress, published online. doi: 10.1094/PHP-2002-0812-01-RV.
  18. Gottwald, T. R., Hughes, G., Graham, J. H., Sun, X., & Riley, T. (2001). The citrus canker epidemic in Florida: the scientific basis of regulatory policy for an invasive species. Phytopathology, 91, 30–34. doi: 10.1094/PHYTO.2001.91.1.30.PubMedCrossRefGoogle Scholar
  19. Graham, J. H., Gottwald, T. R., Riley, T. D., & Achor, D. (1992). Penetration through leaf stomata and strains of Xanthomonas campestris in citrus cultivars varying in susceptibility to bacterial diseases. Phytopathology, 82, 1319–1325. doi: 10.1094/Phyto-82-1319.CrossRefGoogle Scholar
  20. Hau, B., & Kranz, J. (1990). Mathematics and statistics for analysis in epidemiology. In J. Kranz (Ed.), Epidemics of plant diseases. Mathematical analysis and modeling (pp. 12–52). Berlin: Springer.Google Scholar
  21. Koizumi, M. (1976). Incubation period of citrus canker in relation to temperature. Bulletin of Fruit Tree Research, 3, 33–46.Google Scholar
  22. Koizumi, M. (1977). Relation of temperature to the development of citrus canker in the spring. Proceedings of the International Society of Citriculture, 3, 924–928.Google Scholar
  23. Kranz, J., & Hau, B. (1980). Systems analysis in epidemiology. Annual Review of Phytopathology, 18, 67–83. doi: 10.1146/annurev.py.18.090180.000435.CrossRefGoogle Scholar
  24. McLean, F. T. (1921). A study of the structure of stomata of two species of citrus in relation to citrus canker. Bulletin of the Torrey Botanical Club, 48, 101–106. doi: 10.2307/2480340.CrossRefGoogle Scholar
  25. Peltier, G. L. (1920). Influence of temperature and humidity on the growth of Pseudomonas citri and its host plants and on infection and development of the disease. Journal of Agricultural Research, 20, 447–505.Google Scholar
  26. Pruvost, O., Boher, B., Brocherieux, C., Nicole, M., & Chiroleu, F. (2002). Survival of Xanthomonas axonopodis pv. citri in leaf lesions under tropical environmental conditions and simulated splash dispersal of inoculum. Phytopathology, 92, 336–346. doi: 10.1094/PHYTO.2002.92.4.336.PubMedCrossRefGoogle Scholar
  27. Reuther, W. (1977). Citrus. In P. T. Alvim, & T. T. Kozlowski (Eds.), Ecophysiology of Tropical Crops (pp. 409–439). Londres: Academic.Google Scholar
  28. Rossetti, V. (1977). Citrus canker in Latin America: a review. Proceedings of the International Society of Citriculture, 3, 918–924.Google Scholar
  29. Rotem, J. (1988). Techniques of controlled-condition experiments. In J. Kranz, & J. Rotem (Eds.), Experimental Techniques in Plant Disease Epidemiology (pp. 19–31). Berlin: Springer.Google Scholar
  30. Serizawa, S. (1981). Recent studies on the behavior of the causal bacterium of the citrus canker. Proceedings of the International Society of Citriculture, 1, 395–397.Google Scholar
  31. Stall, R. E., Miller, J. W., Marco, G. M., & DeEchenique, B. I. C. (1980). Population dynamics of Xanthomonas citri causing cancrosis of citrus in Argentina. Proceedings of the Florida State Horticultural Societies, 93, 10–14.Google Scholar
  32. Timmer, L. W., Gottwald, T. R., & Zitko, S. E. (1991). Bacterial exudation from lesions of Asiatic citrus canker and citrus bacterial spot. Plant Disease, 75, 192–195.Google Scholar
  33. Timmer, L. W., Zitko, S. E., & Gottwald, T. R. (1996). Population dynamics of Xanthomonas campestris pv. citri on symptomatic and asymptomatic citrus leaves under various environmental conditions. Proceedings of the International Society of Citriculture, 1, 448–451.Google Scholar
  34. Vale, F. X. R., Fernandes Filho, E. I., Liberato, J. R., & Zambolim, L. (2001). Quant — a software to quantify plant disease severity. Proceedings of the 8th International Workshop on Plant Disease Epidemiology (pp. 160). Ouro Preto, Brazil.Google Scholar
  35. Vanderplank, J. E. (Ed.). (1963). Plant Diseases: Epidemics and Control. New York: Academic.Google Scholar
  36. Verniere, C. J., Gottwald, T. R., & Pruvost, O. (2003). Disease development and symptom expression of Xanthomonas axonopodis pv. citri in various citrus plant tissues. Phytopathology, 93, 832–843. doi: 10.1094/PHYTO.2003.93.7.832.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • R. S. C. Christiano
    • 1
  • M. Dalla Pria
    • 1
  • W. C. Jesus Junior
    • 1
  • L. Amorim
    • 1
  • A. Bergamin Filho
    • 1
  1. 1.Department of Entomology, Phytopathology and ZoologyESALQ - University of São PauloPiracicabaBrazil

Personalised recommendations