European Journal of Plant Pathology

, Volume 123, Issue 2, pp 139–151 | Cite as

Control of seed-borne pathogens on legumes by microbial and other alternative seed treatments

  • Federico Tinivella
  • Lucia M. Hirata
  • Mikael A. Celan
  • Sandra A. I. Wright
  • Tahsein Amein
  • Annegret Schmitt
  • Eckhard Koch
  • Jan M. van der Wolf
  • Steven P. C. Groot
  • Dietrich Stephan
  • Angelo Garibaldi
  • Maria Lodovica Gullino
Article

Abstract

Greenhouse trials were carried out in order to test the efficacy of different seed treatments as alternatives to chemicals against Colletotrichum lindemuthianum cause of anthracnose on bean and Ascochyta spp. cause of Ascochyta blights on pea, respectively. Resistance inducers, commercially formulated microorganisms, non-formulated selected strains of different microorganisms (fungi, bacteria and yeasts) and plant extracts were applied as dry or liquid seed treatments on naturally infested seeds. Seedling emergence and disease incidence and/or severity were recorded. Almost all seed treatments turned out to be ineffective in controlling the Ascochyta infections, which is in line with the literature stating that these pathogens are difficult to control. The only alternative treatments that gave some control of Ascochyta spp. were thyme oil and a strain of Clonostachys rosea. The resistance inducers tested successfully controlled infections of bean by C. lindemuthianum. Among the formulated microorganisms, Bacillus subtilis-based formulations provided the best protection from anthracnose. Some strains of Pseudomonas putida, a disease-suppressive, saprophytic strain of Fusarium oxysporum and the mustard powder-based product Tillecur also proved to be effective against bean anthracnose. However, among the resistance inducers as well as among the other groups, certain agents caused a significant reduction of plant emergence. Different alternative seed treatments can therefore be used for the control of C. lindemuthianum on bean, while on pea only thyme oil and a strain of Clonostachys rosea showed some effectiveness against Ascochyta spp.

Keywords

Biocontrol agents Plant extracts Colletotrichum lindemuthianum Ascochyta spp. Integrated pest management Organic farming 

References

  1. Amein, T., & Weber, Z. (2002). Seed treatment with strains of Pseudomonas fluorescens as potential biocontrol agents of wheat take-all. Journal of Plant Diseases and Protection, 109, 655–661.Google Scholar
  2. Benhamou, N., & Garand, C. (2001). Cytological analysis of defense-related mechanisms induced in pea root tissues in response to colonization by non-pathogenic Fusarium oxysporum Fo47. Phytopathology, 91, 730–740.PubMedCrossRefGoogle Scholar
  3. Benhamou, N., Lafontaine, P. J., & Nicole, M. (1994). Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology, 84, 1432–1444.CrossRefGoogle Scholar
  4. Bennett, A. J., Leifert, C., & Whipps, J. M. (2003). Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and non-sterile soils. Soil Biology & Biochemistry, 35, 1565–1573.CrossRefGoogle Scholar
  5. Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122, 419–428.CrossRefGoogle Scholar
  6. Bigirimana, J., & Höfte, M. (2002). Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica, 30, 159–168.CrossRefGoogle Scholar
  7. Castoria, R., Wright, S. A. I., & Droby, S. (2008). Biological control of mycotoxigenic fungi in fruits. In R. Barkai-Golan, & N. Paster (Eds.), Mycotoxins in fruits and vegetables (pp. 311–333). San Diego: Elsevier.CrossRefGoogle Scholar
  8. Conner, R. L., McAndrew, D. W., Kiehn, F. A., Chapman, S. R., & Froese, N. T. (2004). Effect of foliar fungicide application timing on the control of bean anthracnose in the navy bean ‘Navigator’. Canadian Journal of Plant Pathology, 26, 299–303.Google Scholar
  9. Daayf, F., Schmitt, A., & Bélanger, R. (1995). The effects of plant extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Disease, 79, 577–580.Google Scholar
  10. Dann, E. K., & Deverall, B. J. (1995). Effectiveness of systemic resistance in bean against foliar and soilborne pathogens as induced by biological and chemical means. Plant Pathology, 44, 458–466.CrossRefGoogle Scholar
  11. Dann, E. K., & Deverall, B. J. (2000). Activation of systemic disease resistance in pea by an avirulent bacterium or a benzothiadiazole, but not by a fungal leaf spot pathogen. Plant Pathology, 49, 324–332.CrossRefGoogle Scholar
  12. Decker, P. (1957). Inwendige ontsmetting van door Ascochyta pisi aangetaste Erwtezaden met de antibiotica rimocidine en pimaricine, benevens enkele aspecten van net parasitisme van deze schimmel. Tijdschrift Over Planteziekten, 63, 65–144.CrossRefGoogle Scholar
  13. Deepak, S. A., Ishii, H., & Park, P. (2006). Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiological and Molecular Plant Pathology, 69, 52–61.CrossRefGoogle Scholar
  14. Elbadry, M., Taha, R. M., Eldougdoug, K. A., & Gamal-Eldin, H. (2006). Induction of systemic resistance in faba bean (Vicia faba L.) to Bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth-promoting rhizobacteria. Journal of Plant Diseases and Protection, 113, 247–251.Google Scholar
  15. Frey, S., & Carver, T. L. W. (1998). Induction of systemic resistance in pea to pea powdery mildew by exogenous application of salicylic acid. Journal of Phytopathology, 146, 239–245.CrossRefGoogle Scholar
  16. Groot, S. P. C., van der Wolf, J. M., Jalink, H., Langerak, C. J., & van den Bulk, R. W. (2004). Challenges for the production of high quality organic seeds. Seed Testing International, 127, 12–15.Google Scholar
  17. Grosch, R., Junge, H., Krebs, B., & Bochow, H. (1999). Use of Bacillus subtilis as a biocontrol agent. III. Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture. Journal of Plant Diseases and Protection, 106, 568–580.Google Scholar
  18. Gullino, M. L., & Kuijpers, L. A. M. (1994). Social and political implications of managing plant diseases with restricted fungicides in Europe. Annual Review of Phytopathology, 32, 559–579.CrossRefGoogle Scholar
  19. Hagedorn, D. J., & Inglis, D. A. (1986). Handbook of bean diseases. Madison: UW-Extension Publication.Google Scholar
  20. International Seed Testing Association (2002). International Rules for Seed Testing.—Retrieved September 20, 2007, from www.seedtest.org/en/content—1-1132-241.html.
  21. Jensen, B. D., Knudsen, I. M. B., & Jensen, D. F. (2000). Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: Biocontrol efficacy against Fusarium culmorum. European Journal of Plant Pathology, 106, 233–242.CrossRefGoogle Scholar
  22. Johansson, P. M. (2003). Biocontrol of Fusarium in wheat—introducing bacteria to a system of complex interactions. Ph.D. thesis, Swedish University of Agricultural Sciences.Google Scholar
  23. Johansson, P. M., & Wright, S. A. I. (2003). Low-temperature isolation of disease-suppressive bacteria and characterization of a distinctive group of pseudomonads. Applied and Environmental Microbiology, 69, 6464–6474.PubMedCrossRefGoogle Scholar
  24. Katoch, R., Mann, A. P. S., & Sohal, B. S. (2005). Enhanced enzyme activities and induction of acquired resistance in pea with elicitors. Journal of Vegetable Science, 11, 67–83.CrossRefGoogle Scholar
  25. Keinath, A. P., Batson Jr., W. E., Caceres, J., Elliott, M. L., Sumner, D. R., Brannen, P. M., et al. (2000). Evaluation of biological and chemical seed treatments to improve stand of snap bean across the southern United States. Crop Protection, 19, 501–509.CrossRefGoogle Scholar
  26. Koch, E. (1997). Screening of rhizobacteria for antagonistic activity against Pythium ultimum on cucumber and kale. Journal of Plant Diseases and Protection, 104, 353–361.Google Scholar
  27. Koch, E., Kempf, H. J., & Hessenmüller, A. (1998). Characterization of the biocontrol activity, and evaluation of potential plant growth promoting properties, of selected rhizobacteria. Journal of Plant Diseases and Protection, 105, 567–580.Google Scholar
  28. Koch, E., & Schmitt, A. (2006). Methods for seed treatment in organic farming. In C. B. Andreasen, L. Elsgaard, S. Sondergaard & G. Hansen (Eds.), Proceedings of the European Joint Organic Congress—Organic Farming and European Rural Development (pp. 192–193).Google Scholar
  29. Koch, E., Weil, B., Wächter, R., Wohlleben, S., Spiess, H., & Krauthausen, H. J. (2006). Evaluation of selected microbial strains and commercial alternative products as seed treatments for the control of Tilletia tritici, Fusarium culmorum, Drechslera graminea and D. teres. Journal of Plant Diseases and Protection, 113, 150–158.Google Scholar
  30. Kortemaa, H., Rita, H., Haahtela, K., & Smolander, A. (1994). Root-colonization ability of antagonistic Streptomyces griseoviridis. Plant and Soil, 163, 77–83.Google Scholar
  31. Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt, & M. Goodfellow (Eds.), Nucleic acid technologies in bacterial systematics (pp. 115–147). Chichester: Wiley.Google Scholar
  32. Mauch-Mani, B., & Metraux, J. P. (1998). Salicylic acid and systemic acquired resistance to pathogen attack. Annals of Botany, 82, 535–540.CrossRefGoogle Scholar
  33. Maude, R. B., & Kyle, A. M. (1970). Seed treatments with benomyl and other fungicides for the control of Ascochyta pisi on peas. Annals of Applied Biology, 66, 37–41.CrossRefGoogle Scholar
  34. McGee, D. D. (1995). Epidemiological approach to disease management through seed technology. Annual Review of Phytopathology, 33, 445–466.PubMedCrossRefGoogle Scholar
  35. Miller, L. T., & Berger, T. (1985). Bacterial identification by gas chromatography of whole cell fatty acids. Hewlett-Packard application note pp. 228–241. Palo Alto, California: Hewlett-Packard.Google Scholar
  36. Minuto, A., Minuto, G., Migheli, Q., Mocioni, M., & Gullino, M. L. (1997). Effect of antagonistic Fusarium spp. and of different commercial biofungicide formulations on Fusarium wilt of basil (Ocimum basilicum L.). Crop Protection, 16, 765–769.CrossRefGoogle Scholar
  37. Olanya, O. M., & Larkin, R. P. (2006). Efficacy of essential oils and biopesticides on Phytophthora infestans suppression in laboratory and growth chamber studies. Biocontrol Science and Technology, 16, 901–917.CrossRefGoogle Scholar
  38. Pozo, M. J., van Loon, L. C., & Pieterse, C. M. J. (2004). Jasmonates—signals in plant–microbe interactions. Journal of Plant Growth Regulation, 23, 211–222.Google Scholar
  39. Punja, Z. K. (1997). Comparative efficacy of bacteria, fungi and yeasts as biological control agents for diseases of vegetable crops. Canadian Journal of Plant Pathology, 19, 315–323.Google Scholar
  40. Punja, Z. K., & Utkhede, R. S. (2003). Using fungi and yeasts to manage vegetable crop diseases. Trends in Biotechnology, 9, 400–407.CrossRefGoogle Scholar
  41. Raupauch, G. S., & Kloepper, J. W. (2000). Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Disease, 84, 1073–1075.CrossRefGoogle Scholar
  42. Scannavini, M., Barani, A., Franchi, A., & Bortolotti, P. (2004). Use of a plant growth regulator for control of downy mildew on grape. Informatore Agrario, 60(27), 68–70.Google Scholar
  43. Siegrist, L., Glenewinkel, D., Kolle, C., & Schmidtke, M. (1997). Chemically induced resistance in green bean against bacterial and fungal pathogens. Journal of Plant Diseases and Protection, 104, 599–610.Google Scholar
  44. Singh, U. P., Maurya, S., & Singh, D. P. (2003). Antifungal activity and induced resistance in pea by aqueous extract of vermicompost and for control of powdery mildew of pea and balsam. Journal of Plant Diseases and Protection, 110, 544–553.Google Scholar
  45. Spadaro, D., Ciavorella, A., Garibaldi, A., & Gullino, M. L. (2005). Ampliamento dello spettro d’azione di lieviti antagonisti per la lotta biologica in post-raccolta su pomacee. Informatore Fitopatologico—La Difesa delle piante, 55(10), 56–59.Google Scholar
  46. Spiess, H. (2003). Stand der Weizensteinbrandbekämpfung im Ökologischen Landbau. In B. Freyer (Ed.), 7, Wissenschaftstagung zum Ökologischen Landbau—Ökologischer Landbau der Zukunft (pp. 565–566). Universität für Bodenkultur: Wien.Google Scholar
  47. Tivoli, B., & Banniza, S. (2007). Comparison of the epidemiology of ascochyta blights on grain legumes. European Journal of Plant Pathology, 119, 59–76.CrossRefGoogle Scholar
  48. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications. Academic: New York.Google Scholar
  49. Wolf, J. M., van der Birnbaum, Y. E., Zouwen, P. S., & van der Groot, S. P. C. (2008). Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extract. Seed Science and Technology, 36, 76–88.Google Scholar
  50. Xue, A. G. (2003). Efficacy of Clonostachys rosea strain ACM941 and fungicide seed treatments for controlling the root rot complex of field pea. Canadian Journal of Plant Science, 83, 519–524.Google Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • Federico Tinivella
    • 1
  • Lucia M. Hirata
    • 1
  • Mikael A. Celan
    • 2
  • Sandra A. I. Wright
    • 2
    • 5
  • Tahsein Amein
    • 2
  • Annegret Schmitt
    • 3
  • Eckhard Koch
    • 3
  • Jan M. van der Wolf
    • 4
  • Steven P. C. Groot
    • 4
  • Dietrich Stephan
    • 3
  • Angelo Garibaldi
    • 1
  • Maria Lodovica Gullino
    • 1
  1. 1.Centre of Competence for the Innovation in the Agro-Environmental Sector (AGROINNOVA)University of TorinoGrugliascoItaly
  2. 2.Department of Cellular and Molecular BiologyGöteborg UniversityGöteborgSweden
  3. 3.Institute for Biological ControlJulius Kühn-Institute (JKI)DarmstadtGermany
  4. 4.Plant Research InternationalWageningenThe Netherlands
  5. 5.Dipartimento di Scienze Animali, Vegetali e dell’Ambiente Facoltà di AgrariaUniversity of MoliseCampobassoItaly

Personalised recommendations