European Journal of Plant Pathology

, Volume 121, Issue 4, pp 411–423 | Cite as

Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes



This review describes the naturally occurring mechanisms in cereals that lead to a reduction of Fusarium trichothecene mycotoxin accumulation in grains. A reduction in mycotoxin contamination in grains could also limit fungal infection, as trichothecenes have been reported to act as virulence factors. The mechanisms explaining the low toxin accumulation trait, generally referred to as type V resistance to Fusarium, can be subdivided into two classes. Class 1 includes mechanisms by which the plants chemically transform the trichothecenes, leading to their degradation or detoxification. Among the detoxification strategies, glycosylation of trichothecenes is a natural process already reported in wheat. According to the structure and the toxicity of trichothecenes, two other detoxification processes, acetylation and de-epoxidation, can be expressed, at least in transgenic plants. Class 2 comprises mechanisms that lead to reduced mycotoxin accumulation by inhibition of their biosynthesis through the action of plant endogenous compounds. These include both grain constitutive compounds and compounds induced in response to pathogen infection. There are already many compounds with antioxidant properties, like phenolic compounds, peptides or carotenoids, and with prooxidant properties, like hydrogen peroxide or linoleic acid-derived hydroperoxides, that have been described as ‘modulators’ of mycotoxin biosynthesis. This review addresses for the first time different studies reporting specific in vitro effects of such compounds on the biosynthesis of Fusarium mycotoxins. A better understanding of the natural processes limiting accumulation of trichothecenes in the plant will open the way to the development of novel breeding varieties with reduced ‘mycotoxin risk’.


FHB resistance Fusarium Glycosylation Phenolic compounds Mycotoxins Wheat 















Fusarium head blight


fusarenone X


liquid chromatography




mass spectrometry




quantitative trait loci


trichothecene B

UDP glycosyltransferase

uridine diphosphate glycosyltransferase



This work is part of Anne-Laure Boutigny’s PhD project financially supported by the IRTAC (Institut de Recherches Technologiques Agroalimentaires des Céréales), the ANRT (Association Nationale de la Recherche Technique), and the ‘Ministère de l’Enseignement supérieur et de la Recherche’ as part of the National Integrated Research Project ‘RARE fusariotoxines 2003–2007’. We would like to thank Thérèse Ouellet and Shea Miller for review of an earlier version of this manuscript.


  1. Abdel-Aal, E. S. M., Young, J. C., Rabalski, I., Hucl, P., & Fregeau-Reid, J. (2007). Identification and quantification of seed carotenoids in selected wheat species. Journal of Agricultural and Food Chemistry, 55, 787–794.Google Scholar
  2. Apel, K., Bohlmann, H., & Reimann-Philipp, U. (1990). Leaf thionins, a novel class of putative defence factors. Physiologia Plantarum, 80, 315–321.Google Scholar
  3. Assabgui, R. A., Reid, L. M., Hamilton, R. I., & Arnason, J. T. (1993). Correlation of kernel (E)-ferulic acid content of maize with resistance to Fusarium graminearum. Phytopathology, 83, 949–953.Google Scholar
  4. Atkinson, H. A. C., & Miller, K. (1984). Inhibitory effect of deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone on induction of rat and human lymphocyte proliferation. Toxicology Letters, 23, 215–221.PubMedGoogle Scholar
  5. Aziz, N. H., Farag, S. E., Mousa, L. A. A., & Abo-Zaid, M. A. (1998). Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios, 93, 43–54.PubMedGoogle Scholar
  6. Bakan, B., Bily, A. C., Melcion, D., Cahagnier, B., Regnault-Roger, C., Philogene, B. J. R., et al. (2003). Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels. Journal of Agricultural and Food Chemistry, 51, 2826–2831.PubMedGoogle Scholar
  7. Beekrum, S., Govinden, R., Padayachee, T., & Odhav, B. (2003). Naturally occurring phenols: a detoxification strategy for fumonisin B1. Food Additives and Contaminants, 20, 490–493.PubMedGoogle Scholar
  8. Bell, A. A. (1981). Biochemical mechanisms of disease resistance. Annual Review of Plant Physiology, 32, 21–81.Google Scholar
  9. Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16, 497–516.PubMedGoogle Scholar
  10. Berthiller, F., Dall’Asta, C., Schuhmacher, R., Lemmens, M., Adam, G., & Krska, R. (2005). Masked mycotoxins: Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 53, 3421–3425.PubMedGoogle Scholar
  11. Bily, A. (2003). Rôle et importance des déhydrodimères d’acide férulique et autres phénylpropanoïdes dans les mécanismes de résistance de Zea mays L. à Fusarium graminearum Schwabe. Doctoral Thesis, Pau University, France.Google Scholar
  12. Bily, A. C., Reid, L. M., Taylor, J. H., Johnston, D., Malouin, C., Burt, A. J., et al. (2003). Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathology, 93, 712–719.PubMedGoogle Scholar
  13. Binder, E. M. (2007). Managing the risk of mycotoxins in modern feed production. Animal Feed Science and Technology, 133, 149–166.Google Scholar
  14. Binder, E. M., Heidler, D., Schatzmayr, G., Thimm, N., Fuchs, E., Schuh, M., et al. (2000). Mycotoxins and phycotoxins in perspective at the turn of the millennium. (Paper presented at the 10th International IUPAC Symposium on Mycotoxins and Phycotoxins, Guarujá, Brazil).Google Scholar
  15. Bottalico, A., & Perrone, G. (2002). Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. European Journal of Plant Pathology, 108, 611–624.Google Scholar
  16. Bruins, M. B. M., Karsai, I., Schepers, J., & Snijders, C. H. A. (1993). Phytotoxicity of deoxynivalenol to wheat tissue with regard to in vitro selection for Fusarium head blight resistance. Plant Science, 94, 195–206.Google Scholar
  17. Burow, G. B., Nesbitt, T. C., Dunlap, J., & Keller, N. P. (1997). Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Molecular Plant-Microbe Interactions, 10, 380–387.Google Scholar
  18. Castoria, R., de Luca, C., Fabbri, A. A., Passi, S., & Fanelli, C. (1989). By-products of lipoperoxidation and aflatoxin production. Journal of Toxicology, 8, 349–360.Google Scholar
  19. Champeil, A., Dore, T., & Fourbet, J. F. (2004). Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Science, 166, 1389–1415.Google Scholar
  20. Chen, Z. Y., Brown, R. L., Lax, A. R., Guo, B. Z., Cleveland, T. E., & Russin, J. S. (1998). Resistance to Aspergillus flavus in corn kernels is associated with a 14- kDa protein. Phytopathology, 88, 276–281.PubMedGoogle Scholar
  21. Chen, Z. Y., Brown, R. L., Rajasekaran, K., Damann, K. E., & Cleveland, T. E. (2006). Identification of a maize kernel pathogenesis-related protein and evidence for its involvement in resistance to Aspergillus flavus infection and aflatoxin production. Phytopathology, 96, 87–95.PubMedGoogle Scholar
  22. Chipley, J. R., & Uraih, N. (1980). Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid. Applied and Environmental Microbiology, 40, 352–357.PubMedGoogle Scholar
  23. Coleman, J. O. D., Blake-Kalff, M. M. A., & Davies, T. G. E. (1997). Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends in Plant Science, 2, 144–151.Google Scholar
  24. Dall’Asta, C., Berthiller, F., Schuhmacher, R., Adam, G., Lemmens, M., & Krska, R. (2005). DON-glycosides: characterisation of synthesis products and screening for their occurrence in DON-treated wheat samples. Mycotoxin Research, 21, 123–127.Google Scholar
  25. Desjardins, A. E., Hohn, T. M., & McCormick, S. P. (1993). Trichothecene biosynthesis in Fusarium species: chemistry, genetics and significance. Microbiological Reviews, 57, 595–604.PubMedGoogle Scholar
  26. Desjardins, A. E., Plattner, R. D., & Spencer, G. F. (1988). Inhibition of trichothecene toxin biosynthesis by naturally occurring shikimate aromatics. Phytochemistry, 27, 767–771.Google Scholar
  27. Doohan, F. M., Mentewab, A., & Nicholson, P. (2000). Antifungal activity toward Fusarium culmorum in soluble wheat extracts. Phytopathology, 90, 666–671.PubMedGoogle Scholar
  28. Duvick, J. P., Rood, T., Rao, A. G., & Marshak, D. R. (1992). Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. Journal of Biological Chemistry, 267, 18814–18820.PubMedGoogle Scholar
  29. Edwards, S. G. (2004). Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicology Letters, 153, 29–35.PubMedGoogle Scholar
  30. Egorov, T. A., Odintsova, T. I., Pukhalsky, V. A., & Grishin, E. V. (2005). Diversity of wheat anti-microbial peptides. Peptides, 26, 2064–2073.PubMedGoogle Scholar
  31. El-Banna, A. A. (1987). Stability of citrinin and deoxynivalenol during germination process of barley. Mycotoxin Research, 3, 37–41.Google Scholar
  32. Eriksen, G. S. (2003). Metabolism and toxicity of trichothecenes. Doctoral Thesis, Uppsala University, Sweden.Google Scholar
  33. Eriksen, G. S., Pettersson, H., & Lundh, T. (2004). Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food and Chemical Toxicology, 42, 619–624.Google Scholar
  34. Eudes, F., Comeau, A., Rioux, S., & Collin, J. (2000). Phytotoxicity of eight mycotoxins associated with the fusariosis of wheat spikelets. Canadian Journal of Plant Pathology, 22, 286–292.CrossRefGoogle Scholar
  35. Fabbri, A. A., Fanelli, C., Panfili, G., Passi, S., & Fasella, P. (1983). Lipoperoxidation and aflatoxin biosynthesis by Aspergillus parasiticus and A. flavus. Journal of General Microbiology, 129, 3447–3452.Google Scholar
  36. Fanelli, C., & Fabbri, A. A. (1989). Relationship between lipids and aflatoxin biosynthesis. Mycopathologia, 107, 115–120.PubMedGoogle Scholar
  37. Fanelli, C., Fabbri, A. A., Panfili, G., Castoria, R., Luca, C. D., & Passi, S. (1989). Aflatoxin congener biosynthesis induced by lipoperoxidation. Experimental Mycology, 13, 61–68.Google Scholar
  38. Favre L., Verdal-Bonnin, M. N., Pinson-Gadais, L., Roumet, P., Barreau, C., & Richard- Forget, F. (2004). Does biochemical composition of durum wheat kernels influence the trichothecenes B (TCT B) contamination levels? (Paper presented at the 2nd International Symposium on Fusarium Head Blight, Orlando, Florida, USA).Google Scholar
  39. Friend, J. (1981). Plant phenolics, lignification and plant disease. Progress in Phytochemistry, 7, 197–261.Google Scholar
  40. Fritig, B., Heitz, T., & Legrand, M. (1998). Antimicrobial proteins in induced plant defense. Current Opinion in Immunology, 10, 16–22.PubMedGoogle Scholar
  41. Fuchs, E., Binder, E. M., Heidler, D., & Krska, R. (2002). Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Additives and Contaminants, 19, 379–386.PubMedGoogle Scholar
  42. Fujita, M., & Yoshizawa, T. (1990). Metabolism of deoxynivalenol, a trichothecene mycotoxin, in sweet potato root tissues. Journal of the Food Hygienic Society of Japan, 31, 474–478.Google Scholar
  43. Gardner, H. W. (1991). Recent investigations into the lipoxygenase pathways of plants. Biochimica and Biophysica Acta, 1084, 221–239.Google Scholar
  44. Gareis, M., Bauer, J., Thiem, J., Plank, G., Grabley, S., & Gedek, B. (1990). Cleavage of zearalenone-glycoside, a “masked” mycotoxin during digestion in swine. Journal of Veterinary Medicine, 37, 236–240.CrossRefGoogle Scholar
  45. Garvey, G. S., McCormick, S. P., & Rayment, I. (2007). Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum; kinetic insights to combating Fusarium head blight. Journal of Biological Chemistry. DOI  10.1074/m705752200.
  46. Goodrich-Tanrikulu, M., Mahoney, N. E., & Rodriguez, S. B. (1995). The plant growth regulator methyl jasmonate inhibits aflatoxin production by Aspergillus flavus. Microbiology, 141, 2831–2837.PubMedCrossRefGoogle Scholar
  47. Guiraud, P., Steiman, R., Seigle-Murandi, F., & Benoit-Guyod, J. L. (1995). Comparison of the toxicity of various lignin-related phenolic compounds toward selected fungi perfecti and fungi imperfecti. Ecotoxicology and Environmental Safety, 32, 29–33.PubMedGoogle Scholar
  48. Hazel, C. M., & Patel, S. (2004). Influence of processing on trichothecene levels. Toxicology Letters, 153, 51–59.PubMedGoogle Scholar
  49. Hentschel, V., Kranl, K., Hollmann, J., Lindhauer, M. G., Bohm, V., & Bitsch, R. (2002). Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. Journal of Agricultural and Food Chemistry, 50, 6663–6668.PubMedGoogle Scholar
  50. Hua, S.-S. T., Grosjean, O.-K., & Baker, J. L. (1999). Inhibition of aflatoxin biosynthesis by phenolic compounds. Letters in Applied Microbiology, 29, 289–291.PubMedGoogle Scholar
  51. Huang, Z., White, D. G., & Payne, G. A. (1997). Corn seed proteins inhibitory to Aspergillus flavus and aflatoxin biosynthesis. Phytopathology, 87, 622–627.PubMedGoogle Scholar
  52. Huynh, Q. K., Borgmeyer, J. R., & Zobel, J. F. (1992b). Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds. Biochemical and Biophysical Research Communications, 182, 1–5.PubMedGoogle Scholar
  53. Huynh, Q. K., Hironaka, C. M., Levine, E. B., Smith, C. E., Borgmeyer, J. R., & Shah, D. M. (1992a). Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. Journal of Biological Chemistry, 267, 6635–6640.PubMedGoogle Scholar
  54. Jones, P., & Vogt, T. (2001). Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta, 213, 164–174.PubMedGoogle Scholar
  55. Kachroo, A., He, Z. H., Patkar, R., Zhu, Q., Zhong, J., Li, D., et al. (2003). Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Research, 12, 577–586.PubMedGoogle Scholar
  56. Kimura, M., Kaneko, I., Komiyama, M., Takatsuki, A., Koshino, H., Yoneyama, K., et al. (1998). Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins - Cloning and characterization of Tri101. Journal of Biological Chemistry, 273, 1654–1661.PubMedGoogle Scholar
  57. Kimura, M., Takahashi-Ando, N., Nishiuchi, T., Ohsato, S., Tokai, T., Ochiai, N., et al. (2006). Molecular biology and biotechnology for reduction of Fusarium mycotoxin contamination. Pesticide Biochemistry and Physiology, 86, 117–123.Google Scholar
  58. Konopka, I., Czaplicki, S., & Rotkiewicz, D. (2006). Differences in content and composition of free lipids and carotenoids in flour of spring and winter wheat cultivated in Poland. Food Chemistry, 95, 290–300.Google Scholar
  59. Lee, S. E., Campbell, B. C., Molyneux, R. J., Hasegawa, S., & Lee, H. S. (2001). Inhibitory effects of naturally occurring compounds on aflatoxin B1 biotransformation. Journal of Agricultural and Food Chemistry, 49, 5171–5177.PubMedGoogle Scholar
  60. Lemmens, M., Scholz, U., Berthiller, F., Dall’Asta, C., Koutnik, A., Schuhmacher, R., et al. (2005). The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Molecular Plant-Microbe Interactions, 18, 1318–1324.PubMedGoogle Scholar
  61. Lempereur, I., Rouau, X., & Abecassis, J. (1997). Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durum L.) grain and its milling fractions. Journal of Cereal Science, 25, 103–110.Google Scholar
  62. Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.PubMedGoogle Scholar
  63. Mahoney, N., & Molyneux, R. J. (2004). Phytochemical inhibition of aflatoxigenicity in Aspergillus flavus by constituents of walnut (Juglans regia). Journal of Agricultural and Food Chemistry, 52, 1882–1889.PubMedGoogle Scholar
  64. Mallozzi, M. A. B., Correa, B., Haraguchi, M., & Neto, F. B. (1996). Effect of flavonoids on Aspergillus flavus growth and aflatoxin production. Revista de Microbiologia, 27, 161–165.Google Scholar
  65. Manoharan, M., Dahleen, L. S., Hohn, T. M., Neate, S. M., Yu, X. H., Alexander, N. J., et al. (2006). Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol. Plant Science, 171, 699–706.Google Scholar
  66. Matern, U., & Kneusel, R. E. (1988). Phenolic compounds in plant disease resistance. Phytoparasitica, 16, 153–170.Google Scholar
  67. McCormick, S. P., Alexander, N. J., Trapp, S. E., & Hohn, T. M. (1999). Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Applied and Environmental Microbiology, 65, 5252–5256.PubMedGoogle Scholar
  68. McCormick, S. P., Bhatnagar, D., Goynes, W. R., & Lee, L. S. (1988). An inhibitor of aflatoxin biosynthesis in developing cottonseed. Canadian Journal of Botany, 66, 998–1002.Google Scholar
  69. McKeehen, J. D., Bush, R. H., & Fulcher, R. G. (1999). Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. Journal of Agricultural and Food Chemistry, 47, 1476–1482.PubMedGoogle Scholar
  70. Mesterházy, Á. (2002). Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. European Journal of Plant Pathology, 108, 675–684.Google Scholar
  71. Mesterházy, Á., Bartók, T., Mirocha, C. G., & Komoróczy, R. (1999). Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding, 118, 97–110.Google Scholar
  72. Miller, J. D., & Arnison, P. G. (1986). Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana. Canadian Journal of Plant Pathology, 8, 147–150.CrossRefGoogle Scholar
  73. Miller, J. D., & Blackwell, B. A. (1986). Biosynthesis of 3-acetyldeoxynivalenol and other metabolites by Fusarium culmorum HLX 1503 in a stirred jar fermentor. Canadian Journal of Botany, 64, 1–5.Google Scholar
  74. Miller, J. D., Fielder, D. A., Dowd, P. F., Norton, R. A., & Collins, F. W. (1996). Isolation of 4-acetyl-benzoxazolin-2-one (4-ABOA) and diferuloylputrescine from an extract of Gibberella ear rot-resistant corn that blocks mycotoxin biosynthesis, and the insect toxicity of 4-ABOA and related compounds. Biochemical Systematics and Ecology, 24, 647–658.Google Scholar
  75. Miller, J. D., & Young, J. C. (1985). Deoxynivalenol in an experimental Fusarium graminearum infection of wheat. Canadian Journal of Plant Pathology, 7, 132–134.CrossRefGoogle Scholar
  76. Miller, J. D., Young, J. C., & Sampson, D. R. (1985). Deoxynivalenol and Fusarium head blight resistance in spring cereals. Phytopathologische Zeitschrift, 113, 359–367.Google Scholar
  77. Miller, J. D., Young, J. C., & Trenholm, H. L. (1983). Fusarium toxins in field corn. I. Time course of fungal growth and production of deoxynivalenol and other mycotoxins. Canadian Journal of Botany, 61, 3080–3087.Google Scholar
  78. Mitterbauer, R., & Adam, G. (2002). Saccharomyces cerevisae and Arabidopsis thaliana: useful model systems for the identification of molecular mechanisms involved in resistance of plants to toxins. European Journal of Plant Pathology, 108, 699–703.Google Scholar
  79. Moore, J., Liu, J. G., Zhou, K. Q., & Yu, L. L. (2006). Effects of genotype and environment on the antioxidant properties of hard winter wheat bran. Journal of Agricultural and Food Chemistry, 54, 5313–5322.PubMedGoogle Scholar
  80. Mpofu, A., Sapirstein, H. D., & Beta, T. (2006). Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. Journal of Agricultural and Food Chemistry, 54, 1265–1270.PubMedGoogle Scholar
  81. Muthukrishnan, S., Liang, G. H., Trick, H. N., & Gill, B. S. (2001). Pathogenesis-related proteins and their genes in cereals. Plant Cell, Tissue and Organ Culture, 64, 93–114.Google Scholar
  82. Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054, 95–111.PubMedGoogle Scholar
  83. Nagarajan, V., & Bhat, R. V. (1972). Factor responsible for varietal differences in aflatoxin in maize. Journal of Agricultural and Food Chemistry, 20, 911–914.Google Scholar
  84. Nesci, A. V., & Etcheverry, M. G. (2006). Control of Aspergillus growth and aflatoxin production using natural maize phytochemicals under different conditions of water activity. Pest Management Science, 62, 775–784.PubMedGoogle Scholar
  85. Neucere, J. N., & Godshall, M. A. (1991). Effects of base-soluble proteins and methanol-soluble polysaccharides from corn on mycelial growth of Aspergillus flavus. Mycopathologia, 113, 103–108.PubMedGoogle Scholar
  86. Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic-compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.Google Scholar
  87. Norton, R. A. (1997). Effect of carotenoids on aflatoxin B1 synthesis by Aspergillus flavus. Phytopathology, 87, 814–821.PubMedGoogle Scholar
  88. Norton, R. A. (1999). Inhibition of aflatoxin B1 biosynthesis in Aspergillus flavus by anthocyanidins and related flavonoids. Journal of Agricultural and Food Chemistry, 47, 1230–1235.PubMedGoogle Scholar
  89. Ohsato, S., Ochiai-Fukuda, T., Nishiuchi, T., Takahashi-Ando, N., Koizumi, S., Hamamoto, H., et al. (2007). Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol. Plant Cell Reports, 26, 531–538.PubMedGoogle Scholar
  90. Okubara, P. A., Blechl, A. E., McCormick, S. P., Alexander, N. J., Dill-Macky, R., & Hohn, T. M. (2002). Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theoretical and Applied Genetics, 106, 74–83.PubMedGoogle Scholar
  91. Passi, S., Nazzaro-Porro, M., Fanelli, C., Fabbri, A. A., & Fasella, P. (1984). Role of lipoperoxidation in aflatoxin production. Applied Microbiology and Biotechnology, 19, 186–190.Google Scholar
  92. Pinson-Gadais, L., Barreau, C., Chaurand, M., Gregoire, S., Monmarson, M., & Richard-Forget, F. (2007). Distribution of toxigenic Fusarium spp. and mycotoxin production in milling fractions of durum wheat. Food Additives and Contaminants, 24, 53–62.PubMedGoogle Scholar
  93. Ponts, N. (2005). Influence de stress oxydatifs sur la biosynthèse de mycotoxines de Fusarium spp. contaminantes de l’épi de maïs. Doctoral Thesis, Bordeaux University, France.Google Scholar
  94. Ponts, N., Pinson-Gadais, L., Barreau, C., Richard-Forget, F., & Ouellet, T. (2007). Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Letters, 581, 443–447.PubMedGoogle Scholar
  95. Ponts, N., Pinson-Gadais, L., & Richard-Forget, F. (2003). H2O2 effects on trichothecenes B (DON, ADON) production by Fusarium graminearum in liquid culture. Aspects of Applied Biology, 68, 223–228.Google Scholar
  96. Ponts, N., Pinson-Gadais, L., Verdal-Bonnin, M. N., Barreau, C., & Richard-Forget, F. (2006). Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiology Letters, 258, 102–107.PubMedGoogle Scholar
  97. Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R., Krska, R., et al. (2003). Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 278, 47905–47914.PubMedGoogle Scholar
  98. Proctor, R. H., Hohn, T. M., & McCormick, S. P. (1995). Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant-Microbe Interactions, 8, 593–601.PubMedGoogle Scholar
  99. Reid, L. M., Mather, D. E., Arnason, J. T., Hamilton, R. I., & Bolton, A. T. (1992). Changes in phenolic constituents of maize silk infected with Fusarium graminearum. Canadian Journal of Botany, 70, 1697–1702.Google Scholar
  100. Repka, V. (1999). Improved histochemical test for in situ detection of hydrogen peroxide in cells undergoing oxidative burst or lignification. Biologia Plantarum, 42, 599–607.Google Scholar
  101. Rocha, O., Ansari, K., & Doohan, F. M. (2005). Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Additives and Contaminants, 22, 369–378.PubMedGoogle Scholar
  102. Savard, M. E. (1991). Deoxynivalenol fatty acid and glucoside conjugates. Journal of Agricultural and Food Chemistry, 39, 570–574.Google Scholar
  103. Schatzmayr, G., Zehner, F., Taubel, M., Schatzmayr, D., Klimitsch, A., Loibner, A. P., et al. (2006). Microbiologicals for deactivating mycotoxins. Molecular Nutrition and Food Research, 50, 543–551.PubMedGoogle Scholar
  104. Schneweis, I., Meyer, K., Engelhardt, G., & Bauer, J. (2002). Occurrence of zearalenone-4-beta-D-glucopyranoside in wheat. Journal of Agricultural and Food Chemistry, 50, 1736–1738.PubMedGoogle Scholar
  105. Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831–838.Google Scholar
  106. Scott, P. M., Nelson, K., Kanhere, S. R., Karpinski, K. F., Hayward, S., Neish, G. A., et al. (1984). Decline in deoxynivalenol (vomitoxin) concentrations in 1983 Ontario winter wheat before harvest. Applied and Environmental Microbiology, 48, 884–886.PubMedGoogle Scholar
  107. Sewald, N., Vongleissenthall, J. L., Schuster, M., Muller, G., & Aplin, R. T. (1992). Structure elucidation of a plant metabolite of 4-desoxynivalenol. Tetrahedron-Asymmetry, 3, 953–960.Google Scholar
  108. Siranidou, E., Kang, Z., & Buchenauer, H. (2002). Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to Fusarium head blight. Journal of Phytopathology, 150, 200–208.Google Scholar
  109. Snijders, C. H. A. (2004). Resistance in wheat to Fusarium infection and trichothecene formation. Toxicology Letters, 153, 37–46.PubMedGoogle Scholar
  110. Swanson, S. P., Helaszek, C., Buck, W. B., Rood Jr., H. D., & Haschek, W. M. (1988). The role of intestinal microflora in the metabolism of trichothecene mycotoxins. Food and Chemical Toxicology, 26, 823–829.PubMedGoogle Scholar
  111. Swanson, S. P., Rood Jr., H. D., Behrens, J. C., & Sanders, P. E. (1987). Preparation and characterization of the deepoxy trichothecenes: deepoxy HT-2, deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol and deepoxy scirpentriol. Applied and Environmental Microbiology, 53, 2821–2826.PubMedGoogle Scholar
  112. Van Loon, L. C., & Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.Google Scholar
  113. Vergopoulou, S., Galanopoulou, D., & Markaki, P. (2001). Methyl jasmonate stimulates aflatoxin B1 biosynthesis by Aspergillus parasiticus. Journal of Agricultural and Food Chemistry, 49, 3494–3498.PubMedGoogle Scholar
  114. Vigers, A. J., Roberts, W. K., & Selitrennikoff, C. P. (1991). A new family of plant antifungal proteins. Molecular Plant-Microbe Interactions, 4, 315–323.PubMedGoogle Scholar
  115. Wakulinski, W. (1989). Phytotoxicity of the secondary metabolites of fungi causing wheat head fusariosis (head blight). Acta Physiologiae Plantarum, 11, 301–306.Google Scholar
  116. Wallace, G., & Fry, S. C. (1994). Phenolic components of the plant cell wall. International Review of Cytology, 151, 229–267.PubMedGoogle Scholar
  117. Wang, Y. Z., & Miller, J. D. (1988). Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance. Journal of Phytopathology, 122, 118–125.Google Scholar
  118. Wicklow, D. T., Norton, R. A., & McAlpin, C. E. (1998). β-Carotene inhibition of aflatoxin biosynthesis among Aspergillus flavus genotypes from Illinois corn. Mycoscience, 39, 167–172.Google Scholar
  119. Wu, X., Murphy, P., Cunnick, J., & Hendrich, S. (2007). Synthesis and characterization of deoxynivalenol glucuronide: its comparative immunotoxicity with deoxynivalenol. Food and Chemical Toxicology, 45, 1846–1855.PubMedGoogle Scholar
  120. Yao, Q., Liu, Z., & Zeng, Y. (1996). Detoxification of deoxynivalenol by scab resistant wheat and the bioactivities of the product. Acta Mycologica Sinica, 15, 59–64.Google Scholar
  121. Zeringue Jr., H. J., Brown, R. L., Neucere, J. N., & Cleveland, T. E. (1996). Relationships between C6-C12 alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus flavus and aflatoxin production. Journal of Agricultural and Food Chemistry, 44, 403–407.Google Scholar
  122. Zhou, W. C., Kolb, F. L., & Riechers, D. E. (2005). Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome, 48, 770–780.PubMedGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  1. 1.IRTACParisFrance
  2. 2.INRA, UPR1264 MycSAVillenave d’OrnonFrance

Personalised recommendations