Advertisement

European Journal of Plant Pathology

, Volume 121, Issue 4, pp 463–475 | Cite as

Characterization of a Clavibacter michiganensis subsp. michiganensis population in Israel

  • Frida Kleitman
  • Isaac Barash
  • Annette Burger
  • Naim Iraki
  • Yunis Falah
  • Guido Sessa
  • Dan Weinthal
  • Laura Chalupowicz
  • Karl-Heinz Gartemann
  • Rudolf Eichenlaub
  • Shulamit Manulis-SassonEmail author
Article

Abstract

Clavibacter michiganensis subsp. michiganensis (Cmm) strains, collected during the last decade from different locations in Israel, were analyzed by macrorestriction pulsed-field gel electrophoresis (PFGE). Fifty-eight strains from Israel and 18 from other sources were differentiated into 11 haplotypes with either VspI or DraI restriction enzymes. The strains from Israel formed four distinct groups among which groups A (16 strains) and B (32 strains) constituted the major clusters. These two groups originated from the Besor region, which is the main area for growing tomatoes under cover. Rep-PCR, with either ERIC or BOX primers, confirmed results obtained by PFGE. PCR with primers based on three genes – ppaA, chpC and tomA – that spanned the pathogenicity island of the reference strain NCPPB382, produced the expected products with the tested pathogenic strains. Plasmid analysis of representative strains revealed different profiles of one or two plasmids. However all the strains, including five non-pathogenic ones, reacted positively in PCR with primers based on celA gene, which resides on the plasmid pCM1 of NCPPB382. Southern hybridization of total DNA with a 3.2-kb BglII-fragment of pCM1 containing the celA gene was positive when carried out with 31 strains, but the size of the reacting band was not always the same as that of pCM1, suggesting that the plasmids carrying celA may differ in size. Comparison between the colonization rates of strain Cmm42 (group A) and of Cmm32 (group B) did not show any significant differences. The high diversity of the Cmm strains, on the one hand, and the presence of two persistent groups in the Besor region, on the other hand, suggests that the primary inoculum originated each year from residual plants in the soil rather than from infested seeds, in spite of extensive control measures taken by the growers in this area.

Keywords

Bacterial canker Diagnosis PAI PFGE Rep-PCR 

Abbreviations

Cmm

Clavibacter michiganensis subsp. michiganensis

PFGE

pulsed-field gel electrophoresis

PAI

pathogenicity island

Notes

Acknowledgements

This work was supported by the DFG programme for Trilateral Cooperation among Israel, Palestine and Germany (grant no. EI535/12-1). We thank Eva-Maria Zellermann for excellent technical assistance. Contribution No. 504/07 from the ARO, The Volcani Center, Bet Dagan, Israel.

References

  1. Achtman, M. (2004). Population structure of pathogenic bacteria revisited. International Journal for Medical Microbiology, 294, 67–73.CrossRefGoogle Scholar
  2. Alvarez, A. M., & Kaneshiro, W. S. (1998). Detection and identification of Clavibacter michiganensis subsp. michiganensis in tomato seeds.Proceeding of the 3rd International Seed Testing Association Plant Disease Committee. Zurich, Switzerland: The International Seed Testing Association.Google Scholar
  3. Anonymous (1995). Commission Directive 95/4/EC amendment of 21 February 1995 to the European Community Plant Health Directive (77/93/EEC). Official Journal of the European Communities, L44, 56–60.Google Scholar
  4. Birnboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7, 1513–1523.PubMedCrossRefGoogle Scholar
  5. Brown, S. E., Reilley, A. A., Knudson, D. L., & Ishimaru, C. A. (2002). Genomic fingerprinting of virulent and avirulent strains of Clavibacter michiganensis subspecies sepedonicus. Current Microbiology, 44, 112–119.PubMedCrossRefGoogle Scholar
  6. Chang, R. J., Ries, S. M., & Pataky, J. K. (1992). Local sources of Clavibacter michiganensis ssp. michiganensis in the development of bacterial canker on tomatoes. Phytopathology, 82, 553–560.CrossRefGoogle Scholar
  7. Davis, M. J., Gillaspie Jr, A. J., Vidaver, A. K., & Harris, R. W. (1984). Clavibacter: A new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermuda grass stunting disease. International Journal of Systematic Bacteriology, 34, 107–117.CrossRefGoogle Scholar
  8. Dreier, J., Bermpohl, A., & Eichenlaub, R. (1995). Southern hybridization and PCR for specific detection of Clavibacter michiganensis subsp. michiganensis. Phytopathology, 85, 462–468.CrossRefGoogle Scholar
  9. Dreier, J., Meletzuz, D., & Eichenlaub, R. (1997). Characterization of the plasmid encoded virulence region pat-1 of the phytopathogenic Clavibacter michiganensis subsp. michiganensis. Molecular Plant-Microbe Interactions, 10, 195–206.PubMedCrossRefGoogle Scholar
  10. Fatmi, M., & Schaad, N. W. (2002). Survival of Clavibacter michiganensis ssp. michiganensis in infected tomato stems under natural field conditions in California, Ohio and Morocco. Plant Pathology, 51, 149–154.CrossRefGoogle Scholar
  11. Gartemann, K. H., Kirchner, O., Engemann, J., Grefen, I., Eichenlaub, R., & Burger, A. (2003). Clavibacter michiganensis subsp. michiganensis: First steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. Journal of Biotechnology, 106, 179–191.PubMedCrossRefGoogle Scholar
  12. Gleason, M., Gitaitis, R. D., & Ricker, M. (1993). Recent progress in understanding and controlling bacterial canker of tomato in Eastern North America. Plant Disease, 77, 1069–1076.CrossRefGoogle Scholar
  13. Hadas, R., Kritzman, G., Kleitman, F., Gefen, T., & Manulis, S. (2005). Comparison of extraction procedures and determination of the detection threshold for Clavibacter michiganensis ssp. michiganensis in tomato seeds. Plant Pathology, 54, 643–649.CrossRefGoogle Scholar
  14. Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., et al. (1985). Genetic Manipulation of Streptomyces. A Laboratory Manual. Norwich, UK: John Innes Foundation.Google Scholar
  15. Jahr, H., Drier, J., Meletzus, D., Bahro, R., & Eichenlaub, R. (2000). The endo-beta-1,4-glucanase celA of Clavibacter michiganensis subsp. michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. Molecular Plant–Microbe Interactions, 13, 703–714.PubMedCrossRefGoogle Scholar
  16. Kaneshiro, W. S., & Alvarez, A. M. (2001). Specificity of PCR and ELISA assays for hypovirulent and avirulent Clavibacter michiganensis subsp. michiganensis. Phytopathology, 91, 46.Google Scholar
  17. Kaup, O., Gräfen, I., Zellermann, E.-M., Eichenlaub, R., & Gartemann, K.-H. (2005). Identification of a tomatinase in the tomato-pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382. Molecular Plant–Microbe Interactions, 18, 1090–1098.PubMedCrossRefGoogle Scholar
  18. Lee, I.-M., Bartoszyk, I. M., Gundersen-Rindal, D. E., & Davis, R. E. (1997). Phylogeny and classification of bacteria in the genera Clavibacter and Rathayibacter on the basis of 16S rRNA gene sequence analyses. Applied Environmental Microbiology, 63, 2631–2636.Google Scholar
  19. Louws, F. J., Bell, J., Medina-Mora, C. M., Smart, C. D., Opgenorth, D., Ishimaru, C. A., et al. (1998). rep-PCR mediated genomic fingerprinting: a rapid and effective method to identify Clavibacter michiganensis. Phytopathology, 88, 862–868.CrossRefPubMedGoogle Scholar
  20. Maiden, M. C. J. (2006). Multilocus sequence typing of bacteria. Annual Review of Microbiology, 60, 561–588.PubMedCrossRefGoogle Scholar
  21. Meletzus, D., Bermpohl, A., Drier, J., & Eichenlaub, R. (1993). Evidence for plasmid-encoded virulence factors in the phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382. Journal of Bacteriology, 175, 2131–2136.PubMedGoogle Scholar
  22. Ribot, E. M., Fitzgerald, C., Kubota, K., Swaminanthan, B., & Barrett, T. J. (2001). Rapid pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. Journal of Clinical Microbiology, 39, 1889–1894.PubMedCrossRefGoogle Scholar
  23. Santos, M. S., Cruz, L., Norskov, P., & Rasmussen, O. F. (1997). A rapid and sensitive detection of Clavibacter michiganensis subsp. michiganensis in tomato seeds by polymerase chain reaction. Seed Science and Technology, 25, 581–584.Google Scholar
  24. Schaad, N. W., Jones, J. B., & Chun, W. (2001). In Laboratory Guide for Plant Pathogenic Bacteria. St. Paul, MN, USA: APS Press.Google Scholar
  25. Strider, D. L. (1969). Bacterial canker of tomato caused by Corynebacterium michiganense. A literature review and bibliography. North Carolina Agricultural Experiment Station Technical Bulletin 193.Google Scholar
  26. Tsiantos, J. A. (1987). Epiphytic survival of Corynebacterium michiganense pv. michiganense on tomato leaves. Microbios Letters, 34, 59–66.Google Scholar
  27. Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19, 6823–6831.PubMedCrossRefGoogle Scholar
  28. Versalovic, J., Schneider, M., de Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods in Cell Molecular Biology, 5, 25–40.Google Scholar
  29. Volcani, Z. (1985). Bacterial diseases of plants in Israel. Bet Dagan, Israel: Agricultural Research Organization, The Volcani Center.Google Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • Frida Kleitman
    • 1
  • Isaac Barash
    • 2
  • Annette Burger
    • 3
  • Naim Iraki
    • 4
  • Yunis Falah
    • 5
  • Guido Sessa
    • 2
  • Dan Weinthal
    • 1
    • 2
  • Laura Chalupowicz
    • 1
    • 2
  • Karl-Heinz Gartemann
    • 3
  • Rudolf Eichenlaub
    • 3
  • Shulamit Manulis-Sasson
    • 1
    Email author
  1. 1.Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet DaganIsrael
  2. 2.Department of Plant SciencesTel Aviv UniversityTel AvivIsrael
  3. 3.Fakultät für Biologie, Gentechnologie/MikrobiologieUniversität BielefeldBielefeldGermany
  4. 4.UNESCO Biotechnology CenterBethlehem UniversityBethlehemPalestine Authority
  5. 5.Agricultural Experimental Station of the Palestinian Ministry of AgricultureGazaPalestine Authority

Personalised recommendations