Advertisement

European Journal of Plant Pathology

, Volume 121, Issue 1, pp 103–107 | Cite as

Resistance response of the tomato rootstock SC 6301 to Meloidogyne javanica in a plastic house

  • Soledad Verdejo-LucasEmail author
  • F. Javier Sorribas
Article

Abstract

Nematode reproduction on the nematode-susceptible tomato cv. Durinta grafted onto the Mi-resistance gene tomato rootstock SC 6301 was compared to the Mi-resistance gene tomato cv. Monika in a plastic house infested with Meloidogyne javanica. The ungrafted susceptible cv. Durinta was included as a control for reference. Final soil population densities were lower (P ≤ 0.05) on the resistant than susceptible cultivar but intermediate values were recorded on the rootstock SC 6301. The lowest numbers of eggs per gram root were recorded on the resistant cultivar followed by those on the rootstock; in both cases, they were lower (P < 0.05) than on the susceptible control. Cumulative yield (kilogram per square meter) was higher (P < 0.05) on the resistant than susceptible cultivar whether or not it had been grafted. The rootstock SC 6301 provided an intermediate resistance response to M. javanica and was less effective than the resistant cultivar in suppressing nematode populations and plant damage under the experimental conditions of this study.

Keywords

Control Root-knot nematodes Solanum lycopersicum 

Notes

Acknowledgement

The authors thank Fundación Ramón Areces and Ministerio de Educación y Ciencia of Spain project AGL2004-01207 for financial support.

References

  1. Eddaoudi, M., Ammati, M., & Rammah, A. (1997). Identification of resistance breaking populations of Meloidogyne on tomatoes in Morocco and their effect on new sources of resistance. Fundamental and Applied Nematology, 20, 285–289.Google Scholar
  2. Hussey, R. S., & Barker, K. (1973). A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, 57, 1025–1028.Google Scholar
  3. Ioannou, N. (2001). Integrating soil solarization with grating on resistant rootstocks for management of soil-borne pathogens of eggplant. Journal of Horticultural Science and Biotechnology, 76, 396–401.Google Scholar
  4. Lee, M. (1994). Cultivation of grafted vegetables. I. Current status, grafting methods and benefits. Horticultural Science, 29, 235–239.Google Scholar
  5. López-Pérez, J., Le Strange, M., Kaloshian, I., & Ploeg, A. (2006). Differential response of Mi gene–resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection, 25, 382–388.CrossRefGoogle Scholar
  6. Marín Rodriguez, J. (2005). Portagrano. Vademecum de variedades hortícolas. El Ejido, Almería, Spain: Escobar Impresores.Google Scholar
  7. Methyl Bromide Technical Options Committee (MBTOC) (2006). 2006 Report of the methyl bromide technical options committee. Non-chemical alternatives adopted as replacements to methyl bromide on a large scale (pp. 117–124). United Nation Environmental Programme. Nairobi, Kenya: UNON Publishing Section Services.Google Scholar
  8. Miguel, A. (2002). Grafting as a non-chemical alternative to methyl bromide for tomato in Spain. In T Bachelor & J Bolivar (Eds.), Proceedings of international conference on alternatives to methyl bromide. “The remaining challenges” (pp 283–284) Sevilla Spain 5–8 March 2002, European Commission, Brussels, Belgium.Google Scholar
  9. Ornat, C., Verdejo-Lucas, S., & Sorribas, F. J. (2001). A population of Meloidogyne javanica in Spain virulent to the resistance gene Mi in tomato. Plant Disease, 85, 271–276.CrossRefGoogle Scholar
  10. Philis, J., & Vakis, N. (1977). Resistance of tomato varieties to the root-knot nematode Meloidogyne javanica in Cyprus. Nematologia Mediterranea, 5, 39–44.Google Scholar
  11. Rich, J. R., & Olson, S. M. (1999). Utility of Mi gene resistance in tomato to manage Meloidogyne javanica in North Florida. Journal of Nematology, 31, 715–718.Google Scholar
  12. Smith, P. G. (1944). Embryo culture of a tomato species hybrid. Proceedings of the American Society of Horticultural Science, 44, 413–416.Google Scholar
  13. Sorribas, F. J., Ornat, C., Verdejo-Lucas, S., Galeano, M., & Valero, J. (2005). Effectiveness and profitability of the Mi-resistant tomatoes to control root-knot nematodes. European Journal of Plant Pathology, 111, 29–38.CrossRefGoogle Scholar
  14. Sorribas, F. J., & Verdejo-Lucas, S. (1994). Survey of Meloidogyne spp. in tomato fields of the Baix Llobregat County, Spain. Journal of Nematology, 26, 731–736.Google Scholar
  15. de la Torre Martinez, F. (2005). Injertos hortícolas. In IM Cuadrado Gomez, MC García García & MM Fernandez Fernandez. Dirección técnica de semilleros horticolas. Curso de especialización n° 9 (pp 241–269). Fundación para la investigación agraria en la provincvia de Almería. Junta de Andalucía. Almería, Spain.Google Scholar
  16. Tzortzakakis, E. A., & Gowen, S. R. (1996). Occurrence of a resistance-breaking pathotype of Meloidogyne javanica on tomatoes in Crete, Greece. Fundamental and Applied Nematology, 19, 283–288.Google Scholar
  17. Verdejo-Lucas, S., Ornat, C., Sorribas, F. J., & Stchigel, A. (2002). Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almería and Barcelona, Spain. Journal of Nematology, 34, 405–408.Google Scholar
  18. Zeck, W. M. (1971). A rating scheme for field evaluation of root-knot nematode infestations. Pflanzenschtz-Nachrichten Bayer AG, 24, 141–144.Google Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  1. 1.Protecció VegetalIRTACabrilsSpain
  2. 2.Departament d’Enginyeria Agroalimentària i BiotecnologiaUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations