Advertisement

Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism

  • J. M. Whipps
  • S. Sreenivasaprasad
  • S. Muthumeenakshi
  • C. W. Rogers
  • M. P. Challen
Full Research Paper

Abstract

The use of the sclerotial mycoparasite Coniothyrium minitans as a biological control agent of diseases caused by sclerotium-forming pathogens especially Sclerotinia sclerotiorum is briefly reviewed. A number of studies have examined production and application methods, integrated control, ecology, and modes of action in order to understand the biology of the mycoparasite and enhance activity and reproducibility of use. Recently, development of a number of molecular-based techniques has begun to allow the examination of genes involved in mycoparasitism. Some of these procedures have been applied to identify pathogenicity genes involved in the infection of sclerotia of S. sclerotiorum by C. minitans and this work is discussed.

Keywords

Biological control Coniothyrium minitans Mycoparasitism Pathogenicity genes Sclerotia Sclerotinia 

Notes

Acknowledgements

We would like to thank the BBSRC, Defra and the EU (Project: 2E-BCAs in crops) for financial support.

References

  1. Ahmed, A. H. M., & Tribe, H. T. (1977). Biological control of white rot of onion (Sclerotium cepivorum) by Coniothyrium minitans. Plant Pathology, 26, 75–78.CrossRefGoogle Scholar
  2. Bennett, A. J., Leifert, C., & Whipps, J. M. (2003). Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and non-sterile soils. Soil Biology & Biochemistry, 35, 1565–1573.CrossRefGoogle Scholar
  3. Bennett, A. J., Leifert, C., & Whipps, J. M. (2005). Effect of combined treatment of pasteurisation and Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum in soil. European Journal of Plant Pathology, 113, 197–209.CrossRefGoogle Scholar
  4. Bennett, A. J., Leifert, C., & Whipps, J. M. (2006). Survival of Coniothyrium minitans associated with sclerotia of Sclerotinia sclerotiorum in soil. Soil Biology & Biochemistry, 38, 164–172.CrossRefGoogle Scholar
  5. Budge, S. P., McQuilken, M. P., Fenlon, J. S., & Whipps, J. M. (1995). Use of Coniothyrium minitans and Gliocladium virens for biological control of Sclerotinia sclerotiorum in glasshouse lettuce. Biological Control, 5, 513–522.CrossRefGoogle Scholar
  6. Budge, S. P., & Whipps, J. M. (1991). Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathology, 40, 59–66.CrossRefGoogle Scholar
  7. Budge, S. P., & Whipps, J. M. (2001). Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology, 91, 221–227.CrossRefPubMedGoogle Scholar
  8. Campbell, W. A. (1947). A new species of Coniothyrium parasitic on sclerotia. Mycologia, 39, 190–195.CrossRefGoogle Scholar
  9. Chen, X., Li, Y., Du, G. C., & Chen, J. (2005). Application of response surface methodology in medium optimization for spore production of Coniothyrium minitans in solid-state fermentation. World Journal of Microbiology & Biotechnology, 21, 593–599.CrossRefGoogle Scholar
  10. Cheng, J. S., Jiang, D. H., Yi, X. H., Fu, Y. P., Li, G. Q., & Whipps, J. M. (2003). Production, survival and efficacy of Coniothyrium minitans conidia produced in shaken liquid culture. FEMS Microbiology Letters, 227, 127–131.PubMedCrossRefGoogle Scholar
  11. Dahiya, J. S., Singh, D., & Nigam, P. (1998). Characterisation of laccase produced by Coniothyrium minitans. Journal of Basic Microbiology, 38, 349–359.CrossRefGoogle Scholar
  12. Doudican, N. A., Song, B., Shadel, G. S., & Doetsch, P. W. (2005). Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Molecular and Cellular Biology, 25, 5196–5204.PubMedCrossRefGoogle Scholar
  13. de Vrije, T., Antoine, N., Buitelaar, R. M., Bruckner, S., Dissevelt, M., & Durand, A., et al. (2001). The fungal biocontrol agent Coniothyrium minitans: Production by solid-state fermentation, application and marketing. Applied Microbiology and Biotechnology, 56, 58–68.PubMedCrossRefGoogle Scholar
  14. Gerlagh, M., Goossen-van de Geijn, H. M., Fokkema, N. J., & Vereijken, P. F. G. (1999). Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum infected crops. Phytopathology, 89, 141–147.CrossRefPubMedGoogle Scholar
  15. Gerlagh, M., Goossen-van de Geijn, H. M., Hoogland, A. E., & Vereijken, P. F. G. (2003). Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans – Timing of application, concentration and quality of conidial suspension of the mycoparasite. European Journal of Plant Pathology, 109, 489–502.CrossRefGoogle Scholar
  16. Gerlagh, M., Goossen-van de Geijn, H. M., Hoogland, A. E., Vereijken, P. F. G., Horsten, P. F. M., & de Haas, B. H. (2004). Effect of volume and concentration of conidial suspensions of Coniothyrium minitans on infection of Sclerotinia sclerotiorum sclerotia. Biocontrol Science and Technology, 14, 675–690.CrossRefGoogle Scholar
  17. Gerlagh, M., Kruse, M., Van de Geijn, H. M., & Whipps, J. M. (1994). Growth and survival of the mycoparasite Coniothyrium minitans on lettuce leaves in contact with soil in the presence or absence of Sclerotinia sclerotiorum. European Journal of Plant Pathology, 100, 55–59.CrossRefGoogle Scholar
  18. Gerlagh, M., Whipps, J. M., Budge, S. P., & Goossen van de Geijn, H. M. (1996). Efficiency of isolates of Coniothyrium minitans as mycoparasites of Sclerotinia sclerotiorum, Sclerotium cepivorum and Botrytis cinerea on tomato stem pieces. European Journal of Plant Pathology, 102, 787–793.CrossRefGoogle Scholar
  19. Giczey, G., Kerenyi, Z., Fulop, L., & Hornok, L. (2001). Expression of cmg1, an exo-beta-1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Applied and Environmental Microbiology, 67, 865–871.PubMedCrossRefGoogle Scholar
  20. Goldstein, A. L., Carpenter, M. A., Crowhurst, R. N., & Stewart, A. (2000). Identification of Coniothyrium minitans isolates using PCR amplification of a dispersed repetitive element. Mycologia, 92, 46–53.CrossRefGoogle Scholar
  21. Grendene, A., Minardi, P., Giacomini, A., Squartini, A., & Marciano, P. (2002). Characterization of the mycoparasite Coniothyrium minitans: comparison between morpho-physiological and molecular analyses. Mycological Research, 106, 796–807.CrossRefGoogle Scholar
  22. Huang, H. C., Bremer, E., Hynes, R. K., & Erickson, R. S. (2000). Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biological Control, 18, 270–276.CrossRefGoogle Scholar
  23. Huang, H. C., & Erickson, R. S. (2002). Overwintering of Coniothyrium minitans, a mycoparasite of Sclerotinia sclerotiorum, on the Canadian prairies. Australasian Plant Pathology, 31, 291–293.CrossRefGoogle Scholar
  24. Huang, H. C., & Erickson, R. S. (2007). Ulocladium atrum as a biological control agent for white mold of bean caused by Sclerotinia sclerotiorum. Phytoparasitica, 35, 15–22.Google Scholar
  25. Huang, H. C., & Hoes, J. A. (1980). Importance of plant spacing and sclerotial position to development of Sclerotinia wilt of sunflower. Plant Disease, 64, 81–84.Google Scholar
  26. Huang, H. C., & Kozub, G. C. (1991). Monocropping to sunflower and decline of Sclerotinia wilt. Botanical Bulletin of Academia Sinica, 32, 163–170.Google Scholar
  27. Inglis, G. D., & Kawchuk, L. M. (2002). Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Canadian Journal of Microbiology, 48, 60–70.PubMedCrossRefGoogle Scholar
  28. Jones, E., Carpenter, M., Fong, D., Goldstein, A., Thrush, A., & Crowhurst, R., et al. (1999). Co-transformation of the sclerotial mycoparasite Coniothyrium minitans with hygromycin B resistance and beta-glucuronidase markers. Mycological Research, 103, 929–937.CrossRefGoogle Scholar
  29. Jones, E. E., Mead, A., & Whipps, J. M. (2003a). Evaluation of different Coniothyrium minitans inoculum sources and application rates on apothecial production and infection of Sclerotinia sclerotiorum sclerotia. Soil Biology & Biochemistry, 35, 409–419.CrossRefGoogle Scholar
  30. Jones, E. E., Mead, A., & Whipps, J. M. (2004a). Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: Control of sclerotinia disease in glasshouse lettuce. Plant Pathology, 53, 611–620.CrossRefGoogle Scholar
  31. Jones, E. E., & Stewart, A. (2000). Selection of mycoparasites of sclerotia of Sclerotinia sclerotiorum isolated from New Zealand soils. New Zealand Journal of Crop and Horticultural Science, 28, 105–114.Google Scholar
  32. Jones, E. E., Stewart, A., & Whipps, J. M. (2003b). Use of Coniothyrium minitans transformed with the hygromycin B resistance gene to study survival and infection of Sclerotinia sclerotiorum sclerotia in soil. Mycological Research, 107, 267–276.PubMedCrossRefGoogle Scholar
  33. Jones, E. E., Weber, F. J., Oostra, J., Rinzema, A., Mead, A., & Whipps, J. M. (2004b). Conidial quality of the biocontrol agent Coniothyrium minitans produced by solid-state cultivation in a packed-bed reactor. Enzyme and Microbial Technology, 34, 196–207.CrossRefGoogle Scholar
  34. Jones, E. E., & Whipps, J. M. (2002). Effect of inoculum rates and sources of Coniothyrium minitans on control of Sclerotinia sclerotiorum disease in glasshouse lettuce. European Journal of Plant Pathology, 108, 527–538.CrossRefGoogle Scholar
  35. Kaur, J., Munshi, G. D., Singh, R. S., & Koch, E. (2005). Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. Journal of Phytopathology, 153, 274–279.CrossRefGoogle Scholar
  36. Li, M. X., Gong, X. Y., Zheng, J., Jiang, D. H., Fu, Y. P., & Hou, M. S. (2005b). Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Microbiology Letters, 243, 323–329.PubMedCrossRefGoogle Scholar
  37. Li, G. Q., Huang, H. C., & Acharya, S. N. (2002). Sensitivity of Ulocladium atrum, Coniothyrium minitans, and Sclerotinia sclerotiorum to benomyl and vinclozolin. Canadian Journal of Botany, 80, 892–898.CrossRefGoogle Scholar
  38. Li, G. Q., Huang, H. C., & Acharya, S. N. (2003a). Importance of pollen and senescent petals in the suppression of alfalfa blossom blight (Sclerotinia sclerotiorum) by Coniothyrium minitans. Biocontrol Science and Technology, 13, 495–505.CrossRefGoogle Scholar
  39. Li, G. Q., Huang, H. C., & Acharya, S. N. (2003b). Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biological Control, 28, 11–18.CrossRefGoogle Scholar
  40. Li, G. Q., Huang, H. C., Acharya, S. N., & Erickson, R. S. (2005a). Effectiveness of Coniothyrium minitans and Trichoderma atroviride in suppression of sclerotinia blossom blight of alfalfa. Plant Pathology, 54, 204–211.CrossRefGoogle Scholar
  41. Li, G. Q., Huang, H. C., Miao, H. J., Erickson, R. S., Jiang, D. H., & Xiao, Y. N. (2006). Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. European Journal of Plant Pathology, 114, 345–355.CrossRefGoogle Scholar
  42. Lu, Z. X., Laroche, A., & Huang, H. C. (2004). Segregation patterns for integration and expression of Coniothyrium minitans xylanase gene in Arabidopsis thaliana transformants. Botanical Bulletin of Academia Sinica, 45, 23–31.Google Scholar
  43. Luth, P. (2001). The control of Sclerotinia sp. and Sclerotium cepivorum with the biological fungicide Contans® WG – Experiences from field trials and commercial use. In C. S. Young, & K. J. D. Hughes (Eds.) Proceedings of the XI International Sclerotinia workshop (pp. 37–38). York: Central Science Laboratory.Google Scholar
  44. McLean, K. L., & Stewart, A. (2000). Application strategies for control of onion white rot by fungal antagonists. New Zealand Journal of Crop and Horticultural Science, 28, 115–122.Google Scholar
  45. McQuilken, M. P., Budge, S. P., & Whipps, J. M. (1997a). Production, survival and evaluation of liquid culture-produced inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. Biocontrol Science and Technology, 7, 23–36.CrossRefGoogle Scholar
  46. McQuilken, M. P., Budge, S. P., & Whipps, J. M. (1997b). Effects of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans. Mycological Research, 101, 11–17.CrossRefGoogle Scholar
  47. McQuilken, M. P., Gemmell, J., Hill, R. A., & Whipps, J. M. (2003). Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiology Letters, 219, 27–31.PubMedCrossRefGoogle Scholar
  48. McQuilken, M. P., Mitchell, S. J., Budge, S. P., Whipps, J. M., Fenlon, J. S., & Archer, S. A. (1995). Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape. Plant Pathology, 44, 883–896.CrossRefGoogle Scholar
  49. Monaco, C. (1989). Evaluacion de la eficiencia de micoparasitos sobre esclerocios de Sclerotinia sclerotiorum “in vitro.” Revista Facultad Agronomia, 65, 67–73.Google Scholar
  50. Muthumeenakshi, S., Goldstein, A. L., Stewart, A., & Whipps, J. M. (2001). Molecular studies on intraspecific diversity and phylogenetic position of Coniothyrium minitans. Mycological Research, 105, 1065–1074.CrossRefGoogle Scholar
  51. Muthumeenakshi, S., Sreenivasaprasad, S., Rogers, C. W., Challen, M. P., & Whipps, J. M. (2007). Analysis of cDNA transcripts from Coniothyrium minitans reveals a diverse array of genes involved in key processes during sclerotial mycoparasitism. Fungal Genetics and Biology (in press) DOI 10.1016/j.fgb.2007.07.011.
  52. Ooijkaas, L. P., Ifoeng, C. J., Tramper, J., & Buitelaar, R. M. (1998). Spore production of Coniothyrium minitans during solid-state fermentation on different nitrogen sources with glucose or starch as carbon source. Biotechnology Letters, 20, 785–788.CrossRefGoogle Scholar
  53. Ooijkaas, L. P., Wilkinson, E. C., Tramper, J., & Buitelaar, R. M. (1999). Medium optimization for spore production of Coniothyrium minitans using statistically-based experimental designs. Biotechnology and Bioengineering, 64, 92–100.PubMedCrossRefGoogle Scholar
  54. Oostra, J., Tramper, J., & Rinzema, A. (2000). Model-based bioreactor selection for large-scale solid-state cultivation of Coniothyrium minitans spores on oats. Enzyme and Microbial Technology, 27, 652–663.CrossRefGoogle Scholar
  55. Partridge, D. E., Sutton, T. B., & Jordan, D. L. (2006a). Effect of environmental factors and pesticides on mycoparasitism of Sclerotinia minor by Coniothyrium minitans. Plant Disease, 90, 1407–1412.CrossRefGoogle Scholar
  56. Partridge, D. E., Sutton, T. B., Jordan, D. L., & Curtis, V. L. (2006b). Management of Sclerotinia blight of peanut with the biological control agent Coniothyrium minitans. Plant Disease, 90, 957–963.CrossRefGoogle Scholar
  57. Rabeendran, N., Jones, E. E., Moot, D. J., & Stewart, A. (2006). Biocontrol of Sclerotinia lettuce drop by Coniothyrium minitans and Trichoderma hamatum. Biological Control, 39, 352–362.CrossRefGoogle Scholar
  58. Rogers, C. W., Challen, M. P., Green, J. R., & Whipps, J. M. (2004). Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiology Letters, 241, 207–214.PubMedCrossRefGoogle Scholar
  59. Ridgway, H. J., & Stewart, A. (2000). Molecular assisted detection of the mycoparasite Coniothyrium minitans A69 in soil. New Zealand Plant Protection, 53, 114–117.Google Scholar
  60. Sandys-Winsch, C., Whipps, J. M., Gerlagh, M., & Kruse, M. (1993). World distribution of the sclerotial mycoparasite Coniothyrium minitans. Mycological Research, 97, 1175–1178.Google Scholar
  61. Shi, J. L., Li, Y., Qian, H. L., Du, G. C., & Chen, J. (2004). Pre-germinated conidia of Coniothyrium minitans enhances the foliar biological control of Sclerotinia sclerotiorum. Biotechnology Letters, 26, 1649–1652.PubMedCrossRefGoogle Scholar
  62. Smith, S. N., Armstrong, R. A., Barker, M., Bird, R. A., Chohan, R., & Hartell, N. A., et al. (1999). Determination of Coniothyrium minitans conidial and germling lectin avidity by flow cytometry and digital microscopy. Mycological Research, 103, 1533–1539.CrossRefGoogle Scholar
  63. Tribe, H. T. (1957). On the parasitism of Sclerotinia trifoliorum by Coniothyrium minitans. Transactions of the British Mycological Society, 40, 489–199.CrossRefGoogle Scholar
  64. Van Toor, R. F., Jaspers, M. V., & Stewart, A. (2005). Effect of soil microorganisms on viability of sclerotia of Ciborinia camelliae, the causal agent of camellia flower blight. New Zealand Journal of Crop and Horticultural Science, 33, 149–160.Google Scholar
  65. Verkley, G. J. M., da Silva, M., Wicklow, D. T., & Crous, P. W. (2004). Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Studies in Mycology, 50, 323–335.Google Scholar
  66. Vizcaino, J. A., Gonzalez, F. J., Suarez, M. B., Redondo, J., Heinrich, J., & Delgado-Jarana, J., et al. (2006). Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413. BMC Genomics, 7, 193.PubMedCrossRefGoogle Scholar
  67. Whipps, J. M. (2001). Ecological and biotechnological considerations in enhancing disease biocontrol. In M. Vurro, J. Gressel, T. Butt, G. E. Harman, A. Pilgeram, R. J. St. Leger, & D. L. Nuss (Eds.) Enhancing biocontrol agents and handling risks (pp. 43–51). Amsterdam: IOS Press.Google Scholar
  68. Whipps, J. M., & Budge, S. P. (1990). Screening for sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycological Research, 94, 607–612.Google Scholar
  69. Whipps, J. M., & Gerlagh, M. (1992). Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycological Research, 96, 897–907.CrossRefGoogle Scholar
  70. Williams, R. H. (1996). Dispersal of the mycoparasite Coniothyrium minitans. In Animal and Plant Sciences (pp 144). PhD thesis University of Sheffield, Sheffield.Google Scholar
  71. Williams, R. H., Whipps, J. M., & Cooke, R. C. (1998). Splash dispersal of Coniothyrium minitans in the glasshouse. Annals of Applied Biology, 132, 77–90.CrossRefGoogle Scholar
  72. Yang, L., Miao, H. J., Li, G. Q., Yin, L. M., & Huang, H.-C. (2007). Survival of the mycoparasite Coniothyrium minitans on flower petals of oilseed rape under field conditions in central China. Biological Control, 40, 179–186.CrossRefGoogle Scholar
  73. Zantinge, J. L., Huang, H. C., & Cheng, K. J. (2003). Induction, screening and identification of Coniothyrium minitans mutants with enhanced beta-glucanase activity. Enzyme and Microbial Technology, 32, 224–230.CrossRefGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • J. M. Whipps
    • 1
  • S. Sreenivasaprasad
    • 1
  • S. Muthumeenakshi
    • 1
  • C. W. Rogers
    • 1
  • M. P. Challen
    • 1
  1. 1.Warwick HRIUniversity of WarwickWarwickUK

Personalised recommendations