Advertisement

European Journal of Plant Pathology

, Volume 120, Issue 3, pp 299–303 | Cite as

Phenylalanine ammonia lyase activity in chilli CM-334 infected by Phytophthora capsici and Nacobbus aberrans

  • Damaris Godinez-Vidal
  • Mario Rocha-Sosa
  • Edgar B. Sepúlveda-García
  • Joel Lara-Reyna
  • Reyna Rojas-Martínez
  • Emma Zavaleta-Mejía
Short Communication

Abstract

We tested the hypothesis that PAL activity in chilli plants CM-334 inoculated with Nacobbus aberrans (Na) alone or in combination with Phytophthora capsici (Pc), is lower than in those inoculated only with Pc. At 21 days after nematode inoculation, inoculated plants showed a significant (P < 0.01) reduction of 48% in PAL activity compared to those non-inoculated in two separate experiments. In two other tests, where plants were inoculated with the oomycete 21 days after inoculation with the nematode, PAL activity at 2, 4, 6, 8 and 24 h after inoculation with Pc was significantly higher (Tukey, P < 0.01) in plants inoculated only with Pc than in plants inoculated only with Na or both pathogens (Na+Pc).

Keywords

Breaking of resistance Oomycetes Sedentary plant parasitic nematodes 

Notes

Acknowledgements

We are indebted to Dra. S. Fernández-Pavia for supplying isolate 6143 of P. capsici, and Patricia Rueda and Gabriela Sepúlveda for their suggestions and technical assistance. Our appreciation for manuscript review is given to Dr. Ken Evans and MSc. F. Franco-Navarro. This work was supported by CONACYT (Project 28594-b).

References

  1. Baldridge, G., O’Neill, N. & Samac, D. (1998). Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defence-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Molecular Biology, 38, 999–1010.PubMedCrossRefGoogle Scholar
  2. Black, L. L., Green, S. K., Hartman, G. L. & Poulos, J. M. (1991). Pepper Diseases: A Field Guide. Asian Vegetable Research and Development Center, AVRDC Publication, 91, 347.Google Scholar
  3. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRefGoogle Scholar
  4. Candela, M. E., Alcazar, M. D., Espin, A., Egea, C. & Almela, L. (1995). Soluble phenolic acids in Capsicum annuum stems infected with Phytophthora capsici. Plant Pathology, 44, 116–123.CrossRefGoogle Scholar
  5. Fernandez-Pavia, S. (1997). Host-pathogen interactions in the root rot Phytophthora capsici/Capsicum annuum resistant CM-334 pathosystem. Ph.D. Dissertation. New Mexico State University.Google Scholar
  6. Fernandez-Pavia, S. & Liddell, C. (1997). Resistance of Capsicum annuum CM-334 to Phytophthora root rot and phenol biosynthesis. Phytopathology, 87, 529.CrossRefGoogle Scholar
  7. Goddijn, M., Lindsey, K., Van der Lee, F., Klap, J. & Sijmons, P. (1993). Differential gene expression in nematode-induced feeding structures of transgenic plants harboring promoter-gusA fusion constructs. Plant Journal, 4, 863–873.PubMedCrossRefGoogle Scholar
  8. Gogoi, R., Singh, D. & Srivastava, K. (2001). Phenols as a biochemical basis of resistance in wheat against Karnal bunt. Plant Pathology, 50, 470–476.CrossRefGoogle Scholar
  9. Hernández, A. M., Zavaleta-Mejía, E. & Carrillo, G. (1992). Efecto de Nacobbus aberrans (Thorne y Allen, 1994) en la infección de Phytophthora capsici Leo. en chile. Revista Mexicana de Fitopatología, 10, 166–174.Google Scholar
  10. Kim, J. & Kook, B. (1994). Differential accumulation of β-1,3-glucanase and chitinase isoforms in pepper stems infected by compatible and incompatible isolates of Phytophthora capsici. Physiological and Molecular Plant Pathology, 45, 195–209.CrossRefGoogle Scholar
  11. Klessing, F. D. & Malamy, J. (1994). The salicylic acid signal in plants. Plant Molecular Biology, 26, 1439–1458.CrossRefGoogle Scholar
  12. Liang, X., Dron, M., Cramer, C., Dixon, R. & Lamb, C. (1989). Differential regulation of phenylalanine ammonia-lyase genes during development and by environmental cues. Journal of Biological Chemistry, 264, 14486–14492.PubMedGoogle Scholar
  13. Mozzetti, C., Ferraris, L., Tamietti, G. & Matta, A. (1995). Variation in enzyme activities in leaves and cell suspensions as markers of incompatibility in different Phytophthora–pepper interactions. Physiological and Molecular Plant Pathology, 46, 95–107.CrossRefGoogle Scholar
  14. Nicholson, L. & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.CrossRefGoogle Scholar
  15. Opperman, Ch. H., Taylor, Ch. G. & Conkling, M. A. (1994). Root-knot nematode-directed expression of a plant root-specific gene. Science, 263, 221–223.PubMedCrossRefGoogle Scholar
  16. Pegard, A., Brizzard, G., Fazari, A., Soucaze, O., Abad, P., & Djian-Caporalino, C. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology, 95, 158–165.CrossRefGoogle Scholar
  17. Rhodes, M. J. C. (1994). Physiological roles for secondary metabolites in plants: some progress, many outstanding problems. Plant Molecular Biology, 24, 1–20.PubMedCrossRefGoogle Scholar
  18. Saunders, J. & McClure, J. (1975). Phytochrome controlled phenylalanine ammonia lyase in Hordeum vulgare plastids. Phytochemistry, 14, 1285–1289.CrossRefGoogle Scholar
  19. Sijmons, P. C. (1993). Plant-nematode interactions. Plant Molecular Biology, 23, 917–931.PubMedCrossRefGoogle Scholar
  20. Trujillo-Viramontes, F., Zavaleta-Mejía, E., Rojas, R. & Lara, J. (2005). Tiempo de inoculación y nivel de inóculo, factores determinantes para el rompimiento de resistencia a Phytophthora capsici inducido por Nacobbus aberrans en chile (Capsicum annuum). Nematropica, 35, 37–44.Google Scholar
  21. Vargas, T., Zavaleta-Mejía, E. & Hernández, A. M. (1996). Rompimiento de resistencia a Phytophthora capsici Leo en chile serrano CM-334 por Nacobbus aberrans Thorne y Allen. Nematropica, 26, 159–166.Google Scholar
  22. Zavaleta-Mejía, E. (2002). Rompimiento de resistencia a hongos fitopatógenos por nematodos fitoparásitos, una hipótesis. Revista Mexicana de Fitopatología, 20, 118–122.Google Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • Damaris Godinez-Vidal
    • 1
  • Mario Rocha-Sosa
    • 2
  • Edgar B. Sepúlveda-García
    • 2
  • Joel Lara-Reyna
    • 1
  • Reyna Rojas-Martínez
    • 1
  • Emma Zavaleta-Mejía
    • 1
  1. 1.Fitopatología-Colegio de PostgraduadosMontecilloMexico
  2. 2.Instituto de Biotecnología-UNAMCuernavacaMexico

Personalised recommendations