European Journal of Plant Pathology

, Volume 118, Issue 4, pp 375–391 | Cite as

Temporal dynamics of pathogenesis-related metabolites and their plausible pathways of induction in potato leaves following inoculation with Phytophthora infestans

  • Y. Abu-Nada
  • A. C. Kushalappa
  • W. D. Marshall
  • K. Al-Mughrabi
  • A. Murphy
Full Research Paper


Metabolite profiles based on GC/MS were used to study the temporal dynamics of metabolites in potato leaves following pathogen inoculation. In the polar and non-polar plant extracts a total of 106 consistent peaks were detected, of which 95 metabolites were tentatively identified. Following pathogen inoculation, the abundances of 42 metabolites were significantly increased or decreased, and these metabolites were designated as Pathogenesis-Related (PR) Metabolites. Factor analysis of the abundance of 106 metabolites identified four plant–pathogen interaction functions: (i) homeostasis; (ii) primary defence; (iii) secondary defence; (iv) collapse of primary and secondary defence responses. During the primary and secondary defence phases, dramatic changes in the amino acids, known precursors of several plant defence-related metabolites, were observed. Plausible satellite-networks of metabolic pathways leading to the up-regulation of these families of amino acids and other secondary metabolites, and their potential application for the evaluation of horizontal resistance in potato against the late blight pathogen is discussed.


FACTOR Analysis Horizontal resistance GC/MS Lee Retention Index Metabolomics PR-metabolites Solanum tuberosum 



gas chromatography/mass spectrometry


pathogenesis-related metabolites, up (PRU) or down (PRD) regulated.


  1. Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5, 101–113.PubMedCrossRefGoogle Scholar
  2. Bauer, D., Biehler, K., Fock, H., Carrayol, E., Hirel, B., Migge, A., & Becker, T. W. (1997). A role for cytosolic glutamine synthetase in remobilization of leaf nitrogen during water stress in tomato. Physiologia Plantarum, 99, 241–248.CrossRefGoogle Scholar
  3. Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B. J., Mendes, P., Roessner-Tunali, U., Beale, M. H., Trethewey, R. N., Lange, B. M., Wurtele, E. S., & Sumner, L. W. (2004). Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 9, 418–425.PubMedCrossRefGoogle Scholar
  4. Broeckling, C. D., Huhman, D. V., Farag, M. A., Smith, J. T., May, G. D., Mendes, P., Dixon, R. A., & Sumner, L. W. (2005). Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany, 56, 323–336.PubMedCrossRefGoogle Scholar
  5. Carlisle, D. J., Cooke, L. R., Watson, S., & Brown, A. E. (2002). Foliar aggressiveness of Northern Ireland isolates of Phytophthora infestans on detached leaflets of three potato cultivars. Plant Pathology, 51, 424–434.CrossRefGoogle Scholar
  6. Coruzzi, G., & Last, R. (2000). Amino acids. In B. B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 358–410). Rockville, Maryland: American Society of Plant Physiologists.Google Scholar
  7. Daayf, F., & Platt, H. W. (2003). Differential pathogenicity on potato and tomato of Phytophthora infestans US-8 and US-11 strains isolated from potato and tomato. Canadian Journal of Plant Pathology, 25, 150–154.CrossRefGoogle Scholar
  8. Daayf, F., & Platt, H. W. (1999). Assessment of mating types and resistance to metalaxyl of Canadian populations of Phytophthora infestans in 1997. American Journal of Potato Research, 76, 287–295.Google Scholar
  9. Dixon, R. A., Achnine, L., Kota, P., Liu, C.-J., Reddy, M. S. S., & Wang, L. (2002). The phenylpropanoid pathway and plant defence – a genomic perspective. Molecular Plant Pathology, 3, 371–390.CrossRefPubMedGoogle Scholar
  10. Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring of Metabolome: Current analytical technologies. The Analyst, 130, 606–625.PubMedCrossRefGoogle Scholar
  11. Eckel, W. E. (2000). Making sense of non-target compound data from GC-MS library searches. American Laboratory, 32, 17–20.Google Scholar
  12. Evers, D., Ghislain, M., Hausman, J.-F., & Dommes, J. (2003). Differential gene expression in two potato lines differing in their resistance to Phytophthora infestans. Journal of Plant Physiology, 160, 709–712.PubMedCrossRefGoogle Scholar
  13. Fatland, B. L., Nikolau, B. J., & Wurtele, E. S. (2005). Reverse genetic characterization of cytosolic Acetyl-CoA generation by ATP-citrate in Arabidopsis. The Plant Cell, 17, 182–203.PubMedCrossRefGoogle Scholar
  14. Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks. Comparative and Functional Genomics, 2, 155–168.CrossRefPubMedGoogle Scholar
  15. Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000a). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72, 3573–3580.PubMedCrossRefGoogle Scholar
  16. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L., (2000b). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.PubMedCrossRefGoogle Scholar
  17. Flier, W. G., van de Bosch, G. B. M., & Turkensteen, L. J. (2003). Stability of partial resistance in potato cultivars exposed to aggressive strains of Phytophthora infestans. Plant Pathology, 52, 326–337.CrossRefGoogle Scholar
  18. Furuse, K., Takemoto, D., Doke, N., & Kawakita, K. (1999). Involvement of actin filament association in hypersensitive reactions in potato cells. Physiological and Molecular Plant Pathology, 54, 51–61.CrossRefGoogle Scholar
  19. Gebhardt, C., & Valkonen, J. P. T. (2001). Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology, 39, 79–102.PubMedCrossRefGoogle Scholar
  20. Hamzehzarghani, H., Kushalappa, A. C., Dion, Y., Rioux, S., Comeau, A., Yaylayan, V., Marshall, W. D., & Mather, D. E. (2005). Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against fusarium head blight. Physiological and Molecular Plant Pathology, 66, 119–113.CrossRefGoogle Scholar
  21. Jackson, P. A. P., Galinha, C. I. R., Pereira, C. S., Fortunato, A., Soares, N. C., Amancio, S. B. Q., & Ricardo, C. P. P. (2001). Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalyzed by a 40-kilodalton peroxidase. Plant Physiology, 127, 1065–1076.PubMedCrossRefGoogle Scholar
  22. Johnson, H. E., Broadhurst, D., Goodcare, R., & Smith, A. R. (2003). Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62, 919–928.PubMedCrossRefGoogle Scholar
  23. Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. NJ: Upper Saddle River Prentice Hall.Google Scholar
  24. Khattree, N. R., & Naik, D. N. (2000). Multivariate data reduction and discrimination with SAS software. Cary, NC: SAS Institute Inc.Google Scholar
  25. Kombrink, E., & Schmelzer, E. (2001). The hypersensitive response and its role in local and systemic disease resistance. European Journal of Plant Pathology, 107, 69–78.CrossRefGoogle Scholar
  26. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., Dormann, P., Weckwerth, W., Gibon, Y., Stitt, M., Willmitzer, L., Fernie, A. R., & Steinhauser, D. (2005). GMD@CSBDB: The Golm Metabolome Database. Bioinformatics, 21, 1635–1638.PubMedCrossRefGoogle Scholar
  27. Lachman, j., Hamouz, K., & Pivec, V. (2001). Potato glycoalkaloids and their significance in plant protection and human nutrition—Review. Series Rostlinna Vyroba, 47, 181–191.Google Scholar
  28. Lee, M. L., Vassilaros, L., White, C. M., & Novotny, M. (1979). Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Analytical Chemistry, 6, 768–773.Google Scholar
  29. Liechti, R., & Farmer, E. E. (2002). The jasmonate pathway. Science, 296, 1694–1650.CrossRefGoogle Scholar
  30. Medina, M. V., Platt, H. W., & Peters, R. D. (1999). Severity of late blight tuber infection caused by US-1 and US-8 genotypes of Phytophthora infestans in 12 potato cultivars. Canadian Journal of Plant Pathology, 21, 388–390.CrossRefGoogle Scholar
  31. Moehs, C. P., Allen, P. V., Friedman, F., & Belknap, W. R. (1997). Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. The Plant Journal, 11, 227–236.PubMedCrossRefGoogle Scholar
  32. Montesano, M., Brader, G., & Palva, E. T. (2003). Pathogen derived elicitors: Searching for receptors in plants. Molecular Plant Pathology, 4, 73–79.CrossRefPubMedGoogle Scholar
  33. Munger, R., Glass, A. D. M., Goodenow, D. B., & Lightfoot, D. A. (2005). Metabolic fingerprinting in transgenic Nicotiana tabacum altered by Escherichia coli glutamate dehydrogenase gene. Journal of Biomedicine and Biotechnology, 2005, 198–214.CrossRefGoogle Scholar
  34. Osbourn, A. E. (1996). Preformed antimicrobial compounds and plant defence against fungal attack. The Plant Cell, 8, 1821–1831.PubMedCrossRefGoogle Scholar
  35. Palva, T. K., Holmstrom, K.-O., Heino, P., & Palva, E. T. (1993). Induction of plant defence response by exoenzymes of Erwinia carotovora subsp carotovora. Molecular Plant-Microbe Interactions, 6, 190–196.Google Scholar
  36. Peters, R. D., Forster, H., Platt, H. W., Hall, R., & Coffey, M. D. (2001). Novel genotypes of Phytophthora infestans in Canada during 1994 and 1995. American Journal of Potato Research, 78, 39–45.CrossRefGoogle Scholar
  37. Peters, R. D., Platt, H. W., Hall, R., & Medina, M. (1999). Variation in aggressiveness of Canadian isolates of Phytophthora infestans as indicated by their relative abilities to cause potato tuber rot. Plant Disease, 83, 652–661.CrossRefGoogle Scholar
  38. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, 23, 131–142.PubMedCrossRefGoogle Scholar
  39. Roessner, U., Willmitzer, L., & Fernie, A. R. (2001). High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiology, 127, 749–764.PubMedCrossRefGoogle Scholar
  40. Schmelzer, E (2002). Cell polarization, a crucial process in fungal defence. Trends in Plant Science, 7, 411–415.PubMedCrossRefGoogle Scholar
  41. Showalter, A. M. (1993). Structure and function of plant cell wall proteins. Plant Cell, 5, 9–23.PubMedCrossRefGoogle Scholar
  42. Simmonds, N. W., & Wastie, R. L. (1987). Assessment of horizontal resistance to late blight of potatoes. Annals of Applied Biology, 111, 213–221.CrossRefGoogle Scholar
  43. Somerville, C., Browse, J., Jaworski, J., & Ohlrogge, J. B. (2000). Lipids. In B. B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 456–527). Rockville, Maryland: American Society of Plant Physiologists.Google Scholar
  44. Soulie, M. C., Troton, D., Malfatti, P., Bompeix, G., & Laval-Martin, D. (1989). Postinfectional changes of lipids and photosynthesis in Lycopersicon esculentum susceptible to Phytophthora capasi. Plant Science, 61, 169–178.CrossRefGoogle Scholar
  45. Stromberg, A., Bostrom, U., & Hallenberg, N. (2001). Oospore germination and formation by the late blight pathogen Phytophthora infestans in vitro and under field conditions. Journal of Phytopathology, 149, 659–664.CrossRefGoogle Scholar
  46. Sumner, L. W., Mendesb, P., & Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 62, 817–836.PubMedCrossRefGoogle Scholar
  47. Van Loon, L. C., & Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.CrossRefGoogle Scholar
  48. Vleeshouwers, V. G. A. A., van Dooijeweert, W., Govers, F., Kamoun, S., & Colon, L. T. (2000). The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta, 210, 853–864.PubMedCrossRefGoogle Scholar
  49. Wastie, R. L. (1991). Breeding for resistance. In D. S. Ingram, & P. H. Williams (Eds.), Phytophthora infestans, the cause of late blight of potato. Advances in plant pathology (Vol. 7, pp. 193–223). London, UK: Academic Press.Google Scholar
  50. Weber, H. (2002). Fatty acid-derived signals in plants. Trends in Plant Science, 7, 217–224.PubMedCrossRefGoogle Scholar
  51. Weber, H., Vick, B. A., & Farmer, E. E. (1997). Dinor-oxo-phytodienoic acid: A new hexadecanoid signal in the jasmonate family. Proceedings of the National Academy of Science of the USA, 94, 10473–10478.CrossRefGoogle Scholar
  52. Yaeno, T., Matsuda, O., & Iba, K. (2004). Role of chloroplast trienoic fatty acids in plant disease defence responses. The Plant Journal, 40, 931–941.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • Y. Abu-Nada
    • 1
  • A. C. Kushalappa
    • 1
  • W. D. Marshall
    • 2
  • K. Al-Mughrabi
    • 3
  • A. Murphy
    • 4
  1. 1.Department of Plant ScienceMcGill University MontrealCanada
  2. 2.Department of Food Science and Agriculture ChemistryMcGill University Montreal Canada
  3. 3.New Brunswick Department of AgricultureWicklowCanada
  4. 4.Agriculture and Agri-Food CanadaFrederictonCanada

Personalised recommendations