European Journal of Plant Pathology

, Volume 117, Issue 4, pp 347–356 | Cite as

Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato

  • Ana Pérez de Castro
  • José Miguel Blanca
  • María José Díez
  • Fernando Nuez Viñals
Full Research Paper

Abstract

During the process of breeding programmes, several resistance genes have been introgressed into tomato (Solanum lycopersicum) cultivars from different wild tomato relatives. A number of these resistance genes have been mapped to chromosome 6. Among them, Ty-1 and Mi, which confer resistance to Tomato yellow leaf curl disease and to Meloidogyne spp., respectively, are in most cases incorporated in commercial hybrids. Several molecular markers tightly linked to Mi have been identified. This study was conducted in order to find an informative molecular marker linked to Ty-1. Six markers mapped in the same region as Ty-1 were analysed in plant material carrying different combinations of Ty-1 and Mi alleles. Three of the six markers revealed polymorphism among the assayed accessions. One allele of JB-1 marker showed association with Ty-1. Furthermore, the presence of Mi did not interfere with the results. The analysis of several accessions of wild tomato relatives with the three polymorphic markers allowed the establishment of the origin of the alleles found in cultivated plant material, showing that introgressions from S. lycopersicum, S. pimpinellifolium and S. habrochaites will not interfere with the results of this marker which tags Ty-1. Furthermore this analysis enabled the location of CT21, the RFLP marker from which JB-1 was designed.

Keywords

Marker-assisted selection Mi gene Solanum lycopersicum TYLCD 

References

  1. Bailey, D. M. (1941). The seedling test method for root-knot nematode resistance. Proceedings of the American Society for Horticultural Science, 38, 573–575.Google Scholar
  2. Dixon, M. S., Jones, D. A., Hatzixanthis, K., Ganal, M. W., Tanksley, S. D., & Jones, J. D. G. (1995). High-resolution mapping of the physical location of the tomato Cf-2 gene. Molecular Plant-Microbe Interactions, 8, 200–206.PubMedGoogle Scholar
  3. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.Google Scholar
  4. El Mehrach, K., Gharsallah Chouchane, S., Mejía, L., Williamson, V. M., Vidavsky, F., Hatimi, A., Salus, M. S., Martin, C. T., & Maxwell, D. P. (2005). PCR-based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. Acta Horticulturae, 695, 263–270.Google Scholar
  5. Fauquet, C. M., & Stanley, J. (2005). Revising the way we conceive and name viruses below the species level: a review of geminivirus taxonomy calls for new standardized isolate descriptors. Archives of Virology, 150, 2151–2179.PubMedCrossRefGoogle Scholar
  6. Gilbert, J. C. (1958). Some linkage studies with the Mi gene for resistance to root-knot nematodes. Report of the Tomato Genetics Cooperative, 8, 15–17.Google Scholar
  7. Hanson, P. M., Bernacchi, D., Green, S., Tanksley, S. D., Muniyappa, V., Padmaja, A. S., Mei, C.-H., Kuo, G., Fang, D., & Tzu, C.-J. (2000). Mapping a wild tomato introgression associated with Tomato yellow leaf curl virus resistance in a cultivated tomato line. Journal of the American Society for Horticultural Science, 125, 15–20.Google Scholar
  8. Ho, J. Y., Weide, R., Ma, H. M., van Wordragen, M. F., Lambert, K. N., Koorneef, M., Zabel, P., & Williamson, V. M. (1992). The root-knot nematode resistance gene (Mi) in tomato: Construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant Journal, 2, 971–982.PubMedGoogle Scholar
  9. Kaloshian, I., Yaghoobi, J., Liharska, T., Hontelez, J., Hanson, D., Hogan, P., Jesse, T., Wijbrandi, J., Simons, G., Vos, P., Zabel, P., & Williamson, V. M. (1998). Genetic and physical localization of the root-knot nematode resistance locus Mi. Molecular and General Genetics, 257, 376–385.PubMedCrossRefGoogle Scholar
  10. Klein-Lankhorst, R., Rietveld, P., Machiels, B., Verkerk, R., Weide, R., Gebhardt, C., Koorneef, M., & Zabel, P. (1991a). RFLP markers linked to the root knot nematode resistance gene Mi in tomato. Theoretical and Applied Genetics, 81, 661–667.CrossRefGoogle Scholar
  11. Klein-Lankhorst, R. M., Vermunt, A., Weide, R., Liharska, T., & Zabel, P. (1991b) Isolation of molecular markers for tomato (L. esculentum) using random amplified polymorphic DNA (RAPD). Theoretical and Applied Genetics, 83, 108–114.CrossRefGoogle Scholar
  12. Lapidot, M., & Friedmann, M. (2000). Breeding for resistance to whitefly-transmitted geminiviruses. Annals of Applied Biology, 140, 109–127.CrossRefGoogle Scholar
  13. Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., & Pilowsky, M. (1997). Comparison of resistance level to Tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Disease, 81, 1425–1428.Google Scholar
  14. Laterrot, H. (1992). Resistance genitors to Tomato yellow leaf curl virus (TYLCV). Tomato Leaf Curl Newsletter, 1, 2–4.Google Scholar
  15. Laterrot, H. (1995) Breeding network to create tomato varieties resistant to Tomato yellow leaf curl virus (TYLCV). Fruits, 50, 439–444.Google Scholar
  16. Liharska, T. B., Hontelez, J., van Kammen, A., Zabel, P., & Koornneef, M. (1997). Molecular mapping around the centromere of tomato chromosome 6 using irradiation-induced deletions. Theoretical and Applied Genetics, 95, 969–974.CrossRefGoogle Scholar
  17. Liharska, T., Koornneef, M., van Wordragen, M., van Kammen, A., & Zabel, P. (1996). Tomato chromosome 6: Effect of alien chromosomal segments on recombinant frequencies. Genome, 39, 485–491.PubMedGoogle Scholar
  18. Lörz, H., & Wenzel, G. (2005) Molecular marker systems in plant breeding and crop improvement. Berlin: Springer.Google Scholar
  19. Medina-Filho, H., & Tanksley, S. D. (1983) Breeding for nematode resistance. In Evans, D. A., Sharp, W. R., Ammirato, P. V., & Yamada Y. (Eds.), Handbook of plant cell culture (vol I, pp. 904–923). New York: Macmillan.Google Scholar
  20. Messeguer, R., Ganal, M., de Vicente, M. C., Young, N. D., Bolkan, H., & Tanksley, S. D. (1991). High resolution RFLP map around the root knot nematode-resistance gene (Mi) in tomato. Theoretical and Applied Genetics, 82, 529–536.CrossRefGoogle Scholar
  21. Michelson, I., Zamir, D., & Czosnek, H. (1994). Accumulation and translocation of Tomato yellow leaf curl virus (TYLCV) in a Lycopersicon esculentum breeding line containing the L. chilense TYLCV tolerance gene Ty-1. Phytopathology, 84, 928–933.CrossRefGoogle Scholar
  22. Nuez, F., & Carillo, J. M. (2000). Los Marcadores Genéticos en la Mejora Vegetal. Universidad Politécnica de Valencia, Valencia.Google Scholar
  23. Picó, B., Díez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus—a review. Scientia Horticulturae, 67, 151–196.CrossRefGoogle Scholar
  24. Picó, B, Ferriol, M., Díez, M. J., & Nuez, F. (1999). Developing tomato breeding lines resistant to Tomato yellow leaf curl virus. Plant Breeding, 118, 537–542.CrossRefGoogle Scholar
  25. Pilowsky, M., & Cohen, S. (2000). Screening additional wild tomatoes for resistance to the whitefly-borne Tomato yellow leaf curl virus. Acta Physiologiae Plantarum, 22, 351–353.Google Scholar
  26. Rick, C. M., & Fobes, J. A. (1974). Association of an allozyme with nematode resistance. Report of the Tomato Genetics Cooperative, 24, 25.Google Scholar
  27. Smith, P. G. (1944). Embryo culture of a tomato species hybrid. Proceedings of the American Society for Horticultural Science, 44, 413–416.Google Scholar
  28. Tanksley, S. D., Ganal, M. W., Prince, J. P., de Vicente, M. C., Bonierbale, M. W., Broun, P., Fulton, T. M., Giovanonni, J. J., Grandillo Martin, G. B., Messeguer, R., Miller, J. C., Miller, L., Paterson, A. H., Pineda, O., Roder, M. S., Wing, R. A., Wu, W., Young, N. D. (1992). High density molecular linkage maps of the tomato and potato genomes. Genetics, 132, 1141–1160.PubMedGoogle Scholar
  29. van Daelen, R. A. J. J., Gerberns, F., van Ruissen, F., Aarts, J., Hontelez, J., & Zabel, P. (1993). Long-range physical maps of two loci (Aps-1 and GP79) flanking the root-knot nematode resistance gene (Mi) near the centromere of tomato chromosome 6. Plant Molecular Biology, 23, 185–192.PubMedCrossRefGoogle Scholar
  30. van Wordragen, M. F., Weide, R., Liharska, T., van der Steen, A., Koorneef, M., & Zabel, P. (1994). Genetic and molecular organization of the short arm and pericentromeric region of tomato chromosome 6. Euphytica, 79, 169–174.CrossRefGoogle Scholar
  31. Williamson, V. M., & Colwell, G. (1991). Acid phosphatase-1 from nematode resistant tomato: Isolation and characterization of its gene. Plant Physiology, 97, 131–146.CrossRefGoogle Scholar
  32. Williamson, V. M., Ho, J. Y., Wu, F. F., Miller, N., & Kaloshian, I. (1994). A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theoretical and Applied Genetics, 87, 757–763.CrossRefGoogle Scholar
  33. Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Eshed, Y., Harel, E., Pleben, T., Van-Oss, H., Jedar, N., Rabinowitch, H. D., & Czosnek, H. (1994). Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1. Theoretical and Applied Genetics, 88, 141–146.CrossRefGoogle Scholar
  34. Zhang, L. P., Khan, A., Niño-Liu, D., & Foolad, M. R. (2002). A molecular linkage map of tomato displaying chromosomal locations of the resistance gene analogs based on a Lycopersicon esculentum x Lycopersicon hirsutum cross. Genome, 45, 133–146.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • Ana Pérez de Castro
    • 1
  • José Miguel Blanca
    • 1
  • María José Díez
    • 1
  • Fernando Nuez Viñals
    • 1
  1. 1.Instituto de Conservación y Mejora de la AgrodiversidadUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations