Advertisement

European Journal of Plant Pathology

, Volume 117, Issue 3, pp 237–246 | Cite as

Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests

  • Grazia Campanile
  • Angela Ruscelli
  • Nicola Luisi
Full Research Paper

Abstract

One isolate each of Trichoderma viride, Epicoccum nigrum, Fusarium tricinctum, Alternaria alternata, Sclerotinia sclerotiorum and Cytospora (teleomorph: Valsa sp.) present in epigeous declining oak tissues was evaluated for its ability to control Diplodia corticola (isolate 79). This fungus is the causal agent of cankers, vascular necrosis and dieback on various oak species. Among the isolates tested, T. viride and F. tricinctum showed maximum in vitro inhibition of mycelial growth of D. corticola (isolate 79). Species were also evaluated for their ability to reduce mortality caused by D. corticola (isolate 79) of Quercus cerris and Q. pubescens seedlings under controlled conditions. Two series of inoculations were carried out through wounds in the stem; in the first, the distance between the point of inoculation of the antagonist and the pathogen was 6 cm, whereas in the second series the distance was shortened to 3 cm. In seedlings of Q. cerris and Q. pubescens at a distance of 3 cm, inoculation with F. tricinctum and A. alternata significantly reduced mortality caused by D. corticola (isolate 79). Inoculation of T. viride through artificial cuticular wounds in the stem of seedlings prevented the proliferation of D. corticola (isolate 79) only on seedlings of Q. cerris. All Q. pubescens seedlings treated with T. viride manifested pathological symptoms subsequent to proliferation of D. corticola (isolate 79). These observations indicate that the interactions between endophytes in planta and D. corticola (isolate 79) are complex and merit further study.

Keywords

Biocontrol agents Culture filtrates Dual culture Fusarium tricinctum Quercus cerris and Q. pubescens seedlings Trichoderma viride 

Notes

Acknowledgments

This work was supported by MURST project `Role of endophytic fungi in oak decline’ and Department of Agro-alimentary Resources, Forestry Sector, Apulia Region project `Databank of forest systems implemented in the Apulia Region territory according to EEC Reg. no. 2080/92’. We wish to thank Margherita D’Amico for statistical analysis and Monica Nigro and Lucia Palmisano for technical assistance. We would also like to thank Yole De Bellis for copyediting.

References

  1. Anselmi, N., Mazzaglia, A., & Vannini, A. (2000). The role of endophytes in oak decline. In: A. Ragazzi, I. Dellavalle, S. Moricca, P. Capretti, & P. Raddi (Eds.), Decline of oak species in Italy: Problems and perspectives (pp. 129–144). Firenze: Accademia Italiana Scienze Forestali.Google Scholar
  2. Anselmi, N., Capretti, P., Cellerino, G. P., Franceschini, A., Granata, G., Luisi, N., Marras, F., Mazzaglia, A., Mutto Accordi, S., Ragazzi, A., & Vannini, A. (2002). Studi sull’endofitismo di patogeni fungini di debolezza implicati nel deperimento delle querce in Italia. In: Proceedings of National Conference L’endofitismo di funghi e batteri patogeni in piante arboree e arbustive (pp. 43–59). Italy: Sassari.Google Scholar
  3. Arnold, A. E., Mejia, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbis, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences, 100(26), 15649–15654.CrossRefGoogle Scholar
  4. Badalyan, S. M., Innocenti, G., & Garibyan, N. G. (2002). Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathologia Mediterranea, 41, 200–225.Google Scholar
  5. Badalyan, S. M., Innocenti, G., & Garibyan, N. G. (2004). Interaction between xylotrophic mushrooms and mycoparasitic fungi in dual-culture experiment. Phytopathologia Mediterranea, 43, 4–48.Google Scholar
  6. Belisario, A., Motta, E., & Scortichini, M. (1990). Deperimento del bosco: Ipotesi e considerazioni sulle condizioni delle cerrete italiane. Monti e Boschi, 41(2), 7–10.Google Scholar
  7. Bell, D. K., Wells, H. D., & Markham, C. R. (1982). In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72(4), 379–382.Google Scholar
  8. Benhamon, N., Gagne, S., Quere, D. L., & Dehbi, L. (2000). Bacterial mediated induced resistance in cucumber: Beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology, 90, 45–56.Google Scholar
  9. Bianco, M. C., Mannerucci, F., Coricello, A., & Luisi, N. (2002). Comportamento patogenetico di isolati di Diplodia mutila su semenzali di Quercus spp. In: Proceedings of National Conference L’endofitismo di funghi e batteri patogeni in piante arboree e arbustive (pp. 201–214). Italy: Sassari.Google Scholar
  10. Burmeister, H. R., & Plattner, R. D. (1987). Enniatin production by Fusarium tricinctum and its effect on germinating wheat seeds. Phytopathology, 77, 1483–1487.Google Scholar
  11. Chen, C., Belanger, R. R., Benhamou, N., & Paulitz, T. C. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56, 13–23.CrossRefGoogle Scholar
  12. Clay, K., & Schardl, C. (2002). Evolutionary origins and ecological consequences of endophyte Symbiosis with grasses. The American Naturalist, 160, 99–127.CrossRefGoogle Scholar
  13. Covassi, M. (1996). Lotta biologica ed integrata per la difesa delle piante forestali. Informatore Fitopatologico, 1, 5–13.Google Scholar
  14. Daayf, F., Bel-Rhlid, R., & Belange, R. R. (1997). Methyl ester of p-coumaric acid: A phytoalexin compound from long English cucumber leaves. Journal of Chemical Ecology, 23, 1517–1526.CrossRefGoogle Scholar
  15. Delatour, C. (1983). Le dépérissement de chene en Europe. Revue Forestière Francaise, 35, 265–283.Google Scholar
  16. Dennis, C., & Webster, J. (1971a). Antagonistic properties of species-groups of Trichoderma I. Production of non-volatile antibiotics. Transaction of the British Mycological Society, 57, 25–39.Google Scholar
  17. Dennis, C., & Webster, J. (1971b). Antagonistic properties of species-groups of Trichoderma II. Production of volatile antibiotics. Transaction of the British Mycological Society, 57, 41–48.CrossRefGoogle Scholar
  18. Deol, B. S., Ridley, D. D., & Singh, P. (1978). Isolation of cyclodepsipeptides from plant pathogenic fungi. Australian Journal of Chemistry, 31, 1397–1399.CrossRefGoogle Scholar
  19. Elad, Y., & Kapat, A. (1999). The role of Trichoderma harzianum protease in the biological control of Botrytis cinerea. European Journal of Plant Pathology, 83, 308–313.Google Scholar
  20. Franceschini, A., Corda, P., Maddau, L., & Marras, F. (1999). Observations sur Diplodia mutila, pathogène du chêne-liège en Sardaigne. IOBC/wprs Bulletin, 22(3), 5–12.Google Scholar
  21. Franceschini, A., Linaldeddu, B. T., & Marras, F. (2005). Natural infection periods of Diplodia corticola in a declining cork oak forest. In: Proceedings of XII National Conference S.I.Pa.V. (pp. 49). Italy: Villa S. Giovanni (Reggio Calabria).Google Scholar
  22. Gäumann, E. (1951). Some problems of pathological wilting in plants. Enzymology, 11, 401–437.Google Scholar
  23. Ghisalberti, E., & Sivasithamparam, K. (1991). Antifungal antibiotics produced by Trichoderma spp. Soil Biology Biochemistry, 23, 1011–1020.CrossRefGoogle Scholar
  24. Harman, G. E., Latorre, B., Agosin, E., San-Martin, R., Riegel, D. G., Nielsen, P. A. Tronsmo A., & Pearson, R. C. (1996). Biological and integrated control of Botrytis bunch rot of grape using Trichoderma spp. Biological Control, 7, 259–266.CrossRefGoogle Scholar
  25. Houston, D. R. (1992). A host-stress-saprogen model for forest dieback-deline diseases. In: P. D. Manion & D. Lanchance (Eds.), Forest decline concepts The American Phytopathological Society (pp. 3–25). Minnesota: St Paul.Google Scholar
  26. Howell, C. R., Hanson, L. E., Stipanovic, R. D., & Puckhaber, L. S. (2000). Induction of terpenoid synthesis in cotton rots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology, 90(3), 248–252.PubMedGoogle Scholar
  27. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10.Google Scholar
  28. Kamalakannan, A., Mohan, L., Harish, S., Radjacommare, R., Amutha, G., Chiara, K., Karuppiah, R., Mareeswari, P., Rajinimala, N., & Angayarkanni, T. (2004). Biocontrol agents induce disease resistance in Phyllanthus niruri Linn against camping-off disease caused by Rhizoctonia solani. Phytopathologia Mediterranea, 43, 187–194.Google Scholar
  29. Logrieco, A., Altomare, C., Moretti, A., & Bottalico, A. (1992). Cultural and toxigenic variability in Fusarium acuminatum. Mycological Research, 96(6), 518–523.CrossRefGoogle Scholar
  30. Logrieco, A., Mulè, G., & Bottalico, A. (1994). Antagonistic activity in Fusarium acuminatum. Journal of Phytopathology, 140, 193–200.Google Scholar
  31. Logrieco, A., Mulè, G., Moretti, A., & Bottalico, A. (2002). Toxigenic Fusarium species and mycotoxins with maize ear rot in Europe. European Journal of Plant Pathology, 108, 597–609.CrossRefGoogle Scholar
  32. Luisi, N., Lerario, P., & Bianco, M. C. (1996). Botryosphaeria stevensii: Patogenicità su querce e sua attività fitotossica. L’Italia Forestale e Montana, 51(4), 250–263.Google Scholar
  33. Maddau, L., Linaldeddu, B. T., & Franceschini, A. (2005). Antagonistic interactions between fungal endophytes and pathogens involved in oak decline. In: Proceedings of XII National Conference S.I.Pa.V. (pp. 54). Italy: Villa S. Giovanni (Reggio Calabria).Google Scholar
  34. M’Piga, P., Belanger, R. R., Paulitz, T. C., & Benhamou, N. (1997). Increased resistance to Fusarium oxysporium f. sp. radicis lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63–28. Physiological and Molecular Plant Pathology, 16, 1–8.Google Scholar
  35. McSpadden Gardner, B. B., & Fravel, D. R. (2002). Biological control of plant pathogens: Research, commercialization, and application in the USA. Plant Health Progress. On-line, publication doi:10.1094/PHP-2002–0510–01-RV.Google Scholar
  36. Nicolotti, G., & Gonthier, P. (2005). Stump treatment against Heterobasidion with Phlebiopsis gigantea and some chemicals in Picea abies stands in the western. Forest Pathology, 35, 365–374.CrossRefGoogle Scholar
  37. Petrini, O. (1991). Fungal endophytes of tree leaves. In: J. H. Andrews & S. S. Hirano (Eds.), Microbial ecology of leaves. (pp. 179–197). New York: Springer.Google Scholar
  38. Ragazzi, A., Morricca, S., Vagniluca, S., & Dellavalle, I. (1996). Antagonism of Acremonium mucronatum towards Diplopia mutila in tests in vitro and in situ. European Journal of Forest Pathology, 26, 235–243.Google Scholar
  39. Ramamoorthy, V., & Samiyappan, R. (2001). Induction of defense related genes in Pseudomonas fluorescens treated chilli plants in response to infection by Colletotrichum capsici. Journal of Mycology and Plant Pathology, 31, 146–155.Google Scholar
  40. Saikkonen, K., Faeth, S. H., Helander, M., & Sullivan, T. J. (1998). Fungal endophytes: A continuum of interactions with host plants. Annual Review of Ecology and Systematics, 29, 319–343.CrossRefGoogle Scholar
  41. Saikkonen, K., Helander, M. L., & Rousi, M. (2003). Endophytic foliar fungi in Betula spp. and their F1 hybrids. Forest Pathology, 33, 215–222.CrossRefGoogle Scholar
  42. Schardl, C. L., Leuchtmann, A., & Spiering, M. J. (2004). Symbioses of grasses with seedborne fungal endophytes. Annual Review of Plant Biology, 55, 315–340.PubMedCrossRefGoogle Scholar
  43. Schulz, B., Sucker, J., Aust, H. J., Krohn, K., Ludewig, K., Jones, P. G., & Doring, D. (1995). Biologically active secondary metabolites of endophytic Pezicula species. Mycological Research, 99, 1007–1015.Google Scholar
  44. Schulz, B., Guske, S., Dammann, U., & Boyle, C. (1998). Endophyte-host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis, 25, 213–227.Google Scholar
  45. Schulz, B., Römmert, A. K., Dammann, U., Aust, H. J., & Strack, D. (1999). The endophyte-host interaction: A balanced antagonism? Mycological Research, 103(10), 1275–1283.CrossRefGoogle Scholar
  46. Sicoli, G., de Gioia, T., Luisi, N., & Lerario, P. (1998). Multiple factors associated with oak decline in Southern Italy. Phytopathologia Mediterranea, 37, 1–8.Google Scholar
  47. Thomas, F. M., Blank, R., & Hartmann, G. (2002). Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology, 32, 277–307.CrossRefGoogle Scholar
  48. Weindling, R. (1934). Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology, 24, 1153–1179.Google Scholar
  49. Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65, 1061–1070.PubMedGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • Grazia Campanile
    • 1
  • Angela Ruscelli
    • 1
  • Nicola Luisi
    • 1
  1. 1.Department of Biology and Plant PathologyUniversity of BariBariItaly

Personalised recommendations