European Journal of Plant Pathology

, Volume 112, Issue 2, pp 133–142 | Cite as

Luteoforol, a flavan 4-ol, is induced in pome fruits by prohexadione-calciumand shows phytoalexin-like properties against Erwinia amylovoraand other plant pathogens

  • Francesco SpinelliEmail author
  • John-Bryan Speakman
  • Wilhelm Rademacher
  • Heidi Halbwirth
  • Karl Stich
  • Guglielmo Costa


Treatments with prohexadione-calcium led to lowered incidence of fire blight, scab and other diseases in pome fruit trees and other crop plants. In addition to acting as a growth regulator, prohexadione-calcium interferes with flavonoid metabolism and induces the accumulation of the 3-deoxycatechin luteoliflavan in shoots of pome fruit trees. Luteoliflavan does not possess any remarkable antimicrobial activity. Therefore luteoforol, its unstable and highly reactive precursor, has been tested in vitro for its bactericidal and fungicidal activities. Luteoforol was found to be highly active against different strains of Erwinia amylovora, the causal agent of fire blight, and all other bacterial and fungal organisms tested. Phytotoxic effects were also observed in pear plantlets. The results obtained indicate that prohexadione-calcium induces luteoforol as an active principle with non-specific biocidal properties. It is proposed that luteoforol is released upon pathogen attack from its cellular compartment and inhibits further disease development by destroying pathogen cells as well as by inducing a hypersensitive-like reaction in the host plant tissue. This mechanism would be closely analogous to the one known for structurally related phytoalexins in sorghum.


Acylcyclohexanediones fire blight induced resistance Pantoea agglomerans, phytoalexins Pseudomonas fluorescens, Venturia inaequalis 



flavanone 3-hydroxylase






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldwinckle, HS, Bhaskara Reddy, MV, Norelli, JL 2002Evaluation of control of fire blight infection of apple blossoms and shoots with SAR inducers, biological agents, a growth regulator, copper compounds, and other materialsActa Horticulturae590325331Google Scholar
  2. Bate-Smith, EC, Rasper, V 1969Tannins of grain sorghum: luteoforol (leucoluteolinidin), 3′,4,4′,5,7-pentahydroxyflavanJournal of Food Science34203209Google Scholar
  3. Bate-Smith, EC 1969Luteoforol (3′,4,4′,5,7-pentahydroxyflavan) in Sorghum vulgarePhytochemistry818031810CrossRefGoogle Scholar
  4. Bazzi, C, Messina, C, Tortoreto, L, Stefani, E, Bini, F, Brunelli, A, Andreotti, C, Sabatini, E, Spinelli, F, Costa, G, Hauptmann, S, Stammler, G, Doerr, S, Marr, J, Rademacher, W 2003Control of pathogen incidence in pome fruits and other horticultural crop plants with prohexadione-CaEuropean Journal of Horticultural Science68814Google Scholar
  5. Bubán, T, Sallai, P, Obzsut-Truskovszky, E, Hertelendy, L 2002Trials with applying chemical agents other than bactericides to control fire blight in pear orchardsActa Horticulturae590263267Google Scholar
  6. Costa, G, Andreotti, C, Bucchi, F, Sabatini, E, Bazzi, C, Malaguti, S, Rademacher, W 2001aProhexadione-Ca (Apogee®): growth regulation and reduced fire blight incidence in pearHortScience36931933Google Scholar
  7. Costa G, Spinelli F, Sabatini E, Rademacher W (2001b) Incidence of scab (Venturia inaequalis) in apple as affected by different plant bioregulators. In: Kang SM, Bangerth F and Kim SK (eds) Extended Abstracts of the 9th International Symposium on Plant Bioregulators in Fruit Production, Seoul, Korea, 19–22 August 2001, ISHS and KSHS, pp. 67–68Google Scholar
  8. Deckers, T, Schoofs, H 2002Host susceptibility as a factor in control strategies of fire blight in European pear growingActa Horticulturae590127138Google Scholar
  9. Eastgate, JA, Thompson, L, Milmer, J, Cooper, RM, Pollit, CE, Robert, IS 1997Identification of non-pathogenic Erwinia amylovora guaB mutantPlant Pathology46594599CrossRefGoogle Scholar
  10. Fischer, TC, Halbwirth, H, Meisel, B, Stich, K, Forkmann, G 2003Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolismArchives of Biochemistry and Biophysics412223230CrossRefPubMedGoogle Scholar
  11. Halbwirth, H, Kampan, W, Stich, K, Fischer, TC, Meisel, B, Forkmann, G, Rademacher, W 2002Biochemical and molecular biological investigations with respect to induction of fire blight resistance in apple and pear by transiently altering the flavonoid metabolism with specific enzyme inhibitorsActa Horticulturae590485492Google Scholar
  12. Ishimaru, CA, Klos, EJ, Brubaker, RR 1988Multiple antibiotic production by Erwinia herbicolaPhytopathology78746750Google Scholar
  13. Jock, S, Donat, V, López, MM, Bazzi, C, Geider, K 2002Following spread of fire blight in Western, Central and Southern Europe by molecular differentiation of Erwinia amylovora strains with PFGE analysisEnvironmental Microbiology4106114CrossRefPubMedGoogle Scholar
  14. Johnson, KB, Stockwell, VO, McLaughlin, MJ, Loper, JE, Roberts, RG 1993Effects of bacterial antagonists on establishment of honey bee-dispersed Erwinia amylovora in pear blossom and on fire blight controlPhytopathology839951002Google Scholar
  15. Lindow, SE, McGourty, G, Elskins, R 1996Interaction of antibiotics with Pseudomonas fluorescens A506 in the control of fire blight and frost injury of pearPhytopathology86841848Google Scholar
  16. Longstroth, M 2001The 2000 fire blight epidemic in southwest Michigan apple orchardsCompact Fruit Trees341619Google Scholar
  17. Maxson, KL, Jones, AL 2002Management of fire blight with gibberellin inhibitors and SAR inducersActa Horticulturae590217223Google Scholar
  18. McManus, PS, Stockwell, VO, Sundin, GW, Jones, AJ 2002Antibiotic use in AgricultureAnnual Review of Phytopathology40443465CrossRefPubMedGoogle Scholar
  19. Momol, MT, Ugine, JD, Norelli, JL, Aldwinckle, HS 1999The effect of prohexadione calcium, SAR inducers and calcium on the control of shoot blight caused by Erwinia amylovora on appleActa Horticulturae489601605Google Scholar
  20. Nicholson, RL, Jamil, F, Snyder, BA, Lue, WL, Hipskind, JD 1988Phytoalexin synthesis in the juvenile sorghum leafPhysiological and Molecular Plant Pathology33271278CrossRefGoogle Scholar
  21. Nicholson, RL, Kollipara, SS, Vincent, JR, Lyons, PC, Cadena-Gomez, G 1987Phytoalexin synthesis by the sorghum mesocotyls in response to the infection by pathogenic and nonpathogenic fungiProceedings of the National Academy of Science, USA8455205524Google Scholar
  22. Norelli, JL, Jones, AL, Aldwinckle, HS 2003Fire blight management in the twenty-first centuryPlant Disease87756765Google Scholar
  23. Psallidas, PG, Tsiantos, J (2000)Chemical control of fire blightVanneste, JL eds. Fire Blight: The Disease and its Causative Agent, Erwinia amylovoraCAB InternationalOxon, UK.199234Google Scholar
  24. Rademacher, W, Kober, R 2003Efficient use of prohexadione-Ca in pome fruitsEuropean Journal of Horticultural Science68101107Google Scholar
  25. Rademacher, W 2000Growth retardants: effects on gibberellin biosynthesis and other metabolic pathwaysAnnual Review of Plant Physiology and Plant Molecular Biology51501531CrossRefPubMedGoogle Scholar
  26. Ramesh, N, Viswanathan, MB, Saraswathy, A, Brindha, P, Balakrishna, K, Lakshmanaperumalsamy, P 2001Antibacterial activity of luteoforol from Bridelia crenulataFitoterapia72409411CrossRefPubMedGoogle Scholar
  27. Römmelt, S, Treutter, D, Speakman, JB, Rademacher, W 1999Effects of prohexadione-Ca on the flavonoid metabolism of apple with respect to plant resistance against fire blightActa Horticulturae489359363Google Scholar
  28. Römmelt S, Rademacher W, Treutter D (2000) Changes in phenylpropanoid biosynthesis of apple induced by the dioxygenase inhibitor prohexadione-Ca and its role in resistance against pathogens. Polyphenols Communications 2000, Freising-Weihenstephan (Germany), September 11–15, 2000, pp. 589–590Google Scholar
  29. Römmelt, S, Peterek, S, Treutter, D, Rademacher, W, Speakman, JB, Andreotti, C, Costa, G, Sponza, G, Tortoreto, L, Bazzi, C, Halbwirth, H, Zimmermann, N, Stich, K, Forkmann, G 2002Alteration of phenylpropanoid biosynthesis of fruit trees as a tool for enhancement of fire blight resistanceActa Horticulturae590477484Google Scholar
  30. Römmelt, S, Zimmermann, N, Rademacher, W, Treutter, D 2003Formation of novel flavonoids in apple (Malus × domestica) treated with the 2-oxoglutarate-dependent dioxygenase inhibitor prohexadione-CaPhytochemistry64709716CrossRefPubMedGoogle Scholar
  31. Sambrook, J, Fritsch, EF, Maniatis, T 1989Molecular Cloning: A Laboratory ManualCold Spring Harbor Laboratory PressNew YorkGoogle Scholar
  32. Sjulin, TM, Beer, SV 1978Mechanism of wilt induction by amylovorin in cotoneaster shoots and its relation to wilting of shoots infected by Erwinia amylovoraPhytopathology688994Google Scholar
  33. Spinelli F, Bini F, Brunelli A (2002) Utilizzo di vari regolatori di crescita per il controllo della ticchiolatura di melo. Atti VI Giornate Scientifiche SOI, Spoleto (Italy) 23–25 aprile 2002. Vol. 1 (pp. 127–128)Google Scholar
  34. Stich, K, Forkmann, G 1988Biosynthesis of 3-deoxyanthocyanins with flower extracts from Sinningia cardinalisPhytochemistry27785789CrossRefGoogle Scholar
  35. van der Zwet, T 2002Present worldwide distribution of fire blightActa Horticulturae5903334Google Scholar
  36. Vanneste, JL, Yu Harper, J GE, Perry, JH 1996Plugs of immature pear fruit to assess the virulence of Erwinia amylovora and to study the interaction between biological control agents and the fire blight pathogenActa Horticulturae411303307Google Scholar
  37. Vanneste, JL 2000Fire Blight: The Disease and its Causative Agent, Erwinia amylovoraCAB InternationalOxon, UKGoogle Scholar
  38. Winkler, VW 1997Reduced risk concept for prohexadione-calcium, a vegetative growth control plant growth regulator in applesActa Horticulturae451667671Google Scholar
  39. Yoder, KS, Miller, SS, Byers, RE 1999Suppression of fireblight in apple shoots by prohexadione-calcium following experimental and natural inoculation conditionsHortScience3412021204Google Scholar
  40. Youle, D, Cooper, RM 1987Possible determinants of pathogenicity of Erwinia amylovora; evidence for an induced toxinActa Horticulturae217161166Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Francesco Spinelli
    • 1
    Email author
  • John-Bryan Speakman
    • 2
  • Wilhelm Rademacher
    • 2
  • Heidi Halbwirth
    • 3
  • Karl Stich
    • 3
  • Guglielmo Costa
    • 1
  1. 1.Department of ArboricultureUniversity of Bologna, BolognaItaly;
  2. 2.BASF Agricultural CenterGlobal Research Crop Protection PR/HBLimburgerhofGermany
  3. 3.Institute of Technical BioScienceTechnical University of ViennaViennaAustria

Personalised recommendations