European Journal of Plant Pathology

, Volume 115, Issue 1, pp 105–122 | Cite as

Relation between Soil Health, Wave-like Fluctuations in Microbial Populations, and Soil-borne Plant Disease Management

  • Ariena H. C. van BruggenEmail author
  • Alexander M. Semenov
  • Anne D. van Diepeningen
  • Oscar J. de Vos
  • Wim J. Blok


A healthy soil is often defined as a stable soil system with high levels of biological diversity and activity, internal nutrient cycling, and resilience to disturbance. This implies that microbial fluctuations after a disturbance would dampen more quickly in a healthy than in a chronically damaged and biologically impoverished soil. Soil could be disturbed by various processes, for example addition of a nutrient source, tillage, or drying-rewetting. As a result of any disturbance, the numbers of heterotrophic bacteria and of individual species start to oscillate, both in time and space. The oscillations appear as moving waves along the path of a moving nutrient source such as a root tip. The phase and period for different trophic groups and species of bacteria may be shifted indicating that succession occurs. DGGE, Biolog and FAME analysis of subsequent populations in oscillation have confirmed that there is a cyclic succession in microbial communities. Microbial diversity oscillates in opposite direction from oscillations in microbial populations. In a healthy soil, the amplitudes of these oscillations will be small, but the background levels of microbial diversity and activity are high, so that soil-borne diseases will face more competitors and antagonists. However, soil-borne pathogens and antagonists alike will fluctuate in time and space as a result of growing plant roots and other disturbances, and the periods and phases of the oscillations may vary. As a consequence, biological control by members of a single trophic group or species may never be complete, as pathogens will encounter varying populations of the biocontrol agent on the root surface. A mixture of different trophic groups may provide more complete biological control because peaks of different trophic groups occur at subsequent locations along a root. Alternatively, regular addition of soil organic matter may increase background levels of microbial activity, increase nutrient cycling, lower the concentrations of easily available nutrient sources, increase microbial diversity, and enhance natural disease suppression.


biological control disease management harmonic fluctuations resilience soil health soil-borne pathogens 



biocontrol agent


colony forming units


denaturing gradient gel electrophoresis


fatty acid methyl esters


green fluorescent protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aristovskaya TV (1980) Microbiological Processes of Soil Formation. Nauka, Leningrad (in Russian).Google Scholar
  2. Berkelmans, R, Ferris, H, Tenuta, M, Bruggen, AHC 2003Long-term effects of crop management on trophic levels of nematodes other than plant parasitic nematodes disappear after one year of uniform treatmentApplied Soil Ecology23223235CrossRefGoogle Scholar
  3. Blackburn, N, Fenchel, T, Mitchell, J 1998Microscale nutrient patches in planctonic habitats shown by chemotactic bacteriaScience28222542256PubMedCrossRefGoogle Scholar
  4. Blok, WJ, Lamers, JG, Termorshuizen, AJ, Bollen, GJ 2000Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarpingPhytopathology90253259PubMedGoogle Scholar
  5. Boehm, MJ, Madden, LV, Hoitink, HAJ 1993Effect of organic matter decomposition level on bacterial species diversity and composition in relationship to Pythium damping-off severityApplied and Environmental Microbiology5941714179PubMedGoogle Scholar
  6. Boehm, MJ, Wu, T, Stone, AG, Kraakman, B, Iannotti, DA, Wilson, GE, Madden, LV, Hoitink, HAJ 1997Cross-polarized magic-angle spinning 13C nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable bacterial species composition and sustained biological control of Pythium root rotApplied and Environmental Microbiology63162168PubMedGoogle Scholar
  7. Bollen, GJ 1974Fungal recolonization of heat-treated glasshouse soilsAgro-Ecosystems1139155CrossRefGoogle Scholar
  8. Brussaard L, Kuyper TW, Didden WAM, de Goede RGM and Bloem J (2004) Biological soil quality from biomass to biodiversity – importance and resilience to management stress and disturbance. In: Schjønning P, Elmholt S and Christensen BT (eds) Managing Soil Quality: Challenges in Modern Agriculture (pp. 139–161). CAB International.Google Scholar
  9. Buckley, DH, Schmidt, TM 2001The structure of microbial communities in soil and the lasting impact of cultivationMicrobial Ecology421121PubMedGoogle Scholar
  10. Bulluck, LR, Brosius, N, Evanylo, GK, Ristaino, JB 2002Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farmsApplied Soil Ecology19147160CrossRefGoogle Scholar
  11. Burdon, JJ, Chilvers, GA 1976Epidemiology of Pythium-induced damping-off in mixed species seedling standsAnnuals of Applied Biology82233240Google Scholar
  12. Calderon, FJ, Jackson, LE, Scow, KM, Rolston, DE 2000Microbial responses to simulated tillage in cultivated and uncultivated soilsSoil Biology and Biochemistry3215471559CrossRefGoogle Scholar
  13. Clarholm, M 1981Protozoan grazing of bacteria in soil – impact and importanceMicrobial Ecology7343350CrossRefGoogle Scholar
  14. Clark, MS, Horwath, WR, Shennan, C, Scow, KM, Lantni, WT, Ferris, H 1999Nitrogen, weeds and water as yield-limiting factors in conventional, low-input, and organic tomato systemsAgriculture, Ecosystems & Environment73257270CrossRefGoogle Scholar
  15. Copping, LG 2001The Biopesticide ManualBritish Crop Protection CouncilSurrey, UKGoogle Scholar
  16. Deyn, GB, Raaijmakers, CE, Putten, WH 2004Plant community development is affected by nutrients and soil biotaJournal of Ecology92824834CrossRefGoogle Scholar
  17. De Vos OJ and van Bruggen AHC (2001) Soil microbial composition as affected by grass–clover mixture incorporation in the soil. ISME-9, Amsterdam, the Netherlands, P17.077.Google Scholar
  18. Doebeli, M, Ruxton, GD 1997Evolution of dispersal rates in metapopulation models: Branching and cyclic dynamics in phenotype spaceEvolution5117301741CrossRefGoogle Scholar
  19. Doebeli, M, Ruxton, GD 1998Stabilization through spatial pattern formation in metapopulations with long-range dispersalProceedings of the Royal Society of London Series B – Biological Sciences26513251332CrossRefGoogle Scholar
  20. Drinkwater, LE, Letourneau, DK, Workneh, F, van Bruggen, AHC, Shennan, C 1995Fundamental differences between conventional and organic tomato agroecosystems in CaliforniaEcological Applications510981112CrossRefGoogle Scholar
  21. El Titi, A, Richter, J 1987Integrierter Pflanzenschutz im Ackerbau: Das Lautenbach Projekt. III. Schädlinge und Krankheiten 1979–1983Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz94113Google Scholar
  22. Finckh, MR, Wolfe, MS 1997The use of biodiversity to restrict plant diseases and some consequences for farmers and societyJackson, LE eds. Ecology in AgricultureAcademic PressSan Diego, CA, USA203237Google Scholar
  23. Franke-Snyder, M, Douds, DD, Galvez, L, Phillips, JG, Wagoner, P, Drinkwater, L, Morton, JB 2001Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USAApplied Soil Ecology163548CrossRefGoogle Scholar
  24. Fravel, D 1999Hurdles and bottlenecks on the road to biocontrol of plant pathogensAustralasian Plant Pathology285356CrossRefGoogle Scholar
  25. Garbeva, P, Veen, JA, van Elsas, JD 2004Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressivenessAnnual Review of Phytopathology42243270PubMedCrossRefGoogle Scholar
  26. Gerlagh M (1968) Introduction of Ophiobolus graminis into new polders and its decline. Agricultural Research reports 713. Centre for Agricultural Publishing and Documentation, Wageningen.Google Scholar
  27. Germida JJ (1996) Use of rhizobacteria as biofertilizers for enhancing growth and yield of crops. In: Scoles G and Rossnagel B (eds) Proceedings V Int. Oat Conf. & VII Int. Barley Genetics Symp. Univ. Extension Press.Google Scholar
  28. Gilbert, GS, Handelsman, J, Parke, JL 1994Root camouflage and disease controlPhytopathology84222225Google Scholar
  29. Gilligan, CA, Bailey, DJ 1997Components of pathozone behaviourNew Phytologist136343358CrossRefGoogle Scholar
  30. Goud, JC, Termorshuizen, AJ, Blok, WJ, Bruggen, AHC 2004Long-term effect of biological soil disinfestation on Verticillium wiltPlant Disease88688694Google Scholar
  31. Grayston, SJ, Wang, S, Campbell, CD, Edwards, AC 1998Selective influence of plant species on microbial diversity in the rhizosphereSoil Biology and Biochemistry30369378CrossRefGoogle Scholar
  32. Grünwald, NJ, Workneh, F, Hu, S, Bruggen, AHC 1997Comparison of an in vitro and a damping-off assay to test soils for suppressiveness to Pythium aphanidermatum European Journal of Plant Pathology1035563CrossRefGoogle Scholar
  33. Grünwald, NJ, Hu, S, Bruggen, AHC 2000Short-term cover crop decomposition in organic and conventional soils: Characterization of soil C, N, microbial and plant pathogen dynamicsEuropean Journal of Plant Pathology1063750CrossRefGoogle Scholar
  34. Guetsky, R, Shtienberg, D, Elad, Y, Dinoor, A 2001Combining biocontrol agents to reduce the variability of biological controlPhytopathology91621627PubMedGoogle Scholar
  35. Guetsky, R, Shtienberg, D, Elad, Y, Fisher, E, Dinoor, A 2002Improving biological control by combining biocontrol agents each with several mechanisms of disease suppressionPhytopathology92976985PubMedGoogle Scholar
  36. Hoper, H, Alabouvette, C 1996Importance of physical and chemical soil properties in the suppressiveness of soils to plant diseasesEuropean Journal of Soil Biology324158Google Scholar
  37. Kim, DS, Weller, DM, Cook, RJ 1997Population dynamics of Bacillus sp. L324-92R12 and Pseudomonas fluorescens 2-79RN10 in the rhizosphere of wheatPhytopathology87559564PubMedGoogle Scholar
  38. Kloepper, JW, Tuzun, S, Zehnder, GW, Wei, G, Hoffland, E, Bakker, PAHM, Loon, LC 1997Multiple disease protection by rhizobacteria that induce systemic resistance-historical precedencePhytopathology87136138PubMedGoogle Scholar
  39. Ko, WH 1982Biological control of Phytophthora root rot of papaya with virgin soilPlant Disease66446448CrossRefGoogle Scholar
  40. Koch, E 1999Evaluation of commercial products for microbial control of soil-borne plant diseasesCrop Protection18119125CrossRefGoogle Scholar
  41. Kowalchuk, GA, Buma, DS, Boer, W, Klinkhamer, PGL, Veen, JA 2002Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganismsAntonie van Leeuwenhoek81509520PubMedCrossRefGoogle Scholar
  42. Kozhevin PA (1989) Microbial Populations in Nature. Moscow State University Press 174 p. (in Russian).Google Scholar
  43. Kreutzer, WA 1965The reinfestation of treated soilBaker, KFSnyder, WC eds. Ecology of Soil-borne Plant PathogensUniversity of California PressBerkeley495508Google Scholar
  44. Lawlor, K, Knight, BP, Barbosa-Jefferson, VL, Lane, PW, Lilley, AK, Paton, GI, McGrath, SP, O’Flaherty, SM, Hirsch, PR 2000Comparison of methods to investigate microbial populations in soils under different agricultural managementFEMS Microbiology & Ecology33129137Google Scholar
  45. Lazarovits, G, Tenuta, M, Conn, KL 2001Organic amendments as a disease control strategy for soil-borne diseases of high-value agricultural cropsAustralasian Plant Pathology30111117CrossRefGoogle Scholar
  46. Liiri, M, Setala, H, Haimi, J, Pennanen, T, Fritze, H 2002Soil processes are not influenced by the functional complexity of soil decomposer food webs under disturbanceSoil Biology and Biochemistry3410091020CrossRefGoogle Scholar
  47. Mäder, P, Flieβbach, A, Dubois, D, Gunst, L, Fried, P, Niggli, U 2002Soil fertility and biodiversity in organic farmingScience29616941697PubMedCrossRefGoogle Scholar
  48. Mas, A, Houwen, F, Verstraete, W 1996Agricultural factors affecting methane oxidation in arable soilBiology and Fertility of Soils2195102CrossRefGoogle Scholar
  49. McCully, ME, Canny, MJ 1985Localization of translocated 14C in roots and root exudates of field grown maizePhysiologia Plantarum65380392CrossRefGoogle Scholar
  50. Mol, L, Riessen, HW 1995Effect of plant roots on the germination of microsclerotia of Verticillium dahliae. I. Use of root observation boxes to assess differences among cropsEuropean Journal of Plant Pathology101673678CrossRefGoogle Scholar
  51. Mulder, C, Zwart, D, Wijnen, HJ, Schouten, AJ, Breure, AM 2003Observational and simulated evidence of ecological shifts within the soil nematode community of agroecosystems under conventional and organic farmingFunctional Ecology17516525CrossRefGoogle Scholar
  52. Nitta, T 1991Diversity of root fungal floras: Its implications for soil-borne diseases and crop growthJapan Agricultural Research Quarterly25611Google Scholar
  53. Oehl, F, Sieverding, E, Ineichen, K, Mäder, P, Boller, T, Wiemken, A 2003Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central EuropeApplied and Environmental Microbiology6928162824PubMedCrossRefGoogle Scholar
  54. Orwin, KH, Wardle, DA 2004New indices for quantifying the resistance and resilience of soil biota to exogenous disturbancesSoil Biology and Biochemistry3619071912CrossRefGoogle Scholar
  55. Pierson, EA, Weller, DM 1994Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheatPhytopathology84940947Google Scholar
  56. Rapport,  1995Ecosystem health – more than a metaphorEnvironmental Values4287309Google Scholar
  57. Roget, DK 1995Decline in root rot (Rhizoctonia solani AG-8) in wheat in a tillage and rotation experiment at Avon, South AustraliaAustralian Journal of Experimental Agriculture3510091013CrossRefGoogle Scholar
  58. Rovira, AD 1973Zones of exudation along plant roots and spatial distribution of microorganisms in the rhizospherePesticide Science4361366Google Scholar
  59. Ryan, MH, Chilvers, GA, Dumaresq, DC 1994Colonization of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbourPlant and Soil1603340CrossRefGoogle Scholar
  60. Schippers, B, Vuurde, JWL 1978Studies of microbial colonization of wheat roots and the manipulation of the rhizosphere microfloraLoutit, MWMiles, JAR eds. Microbial EcologySpringer-VerlagBerlin295298Google Scholar
  61. Schjønning, P, Elmholdt, S, Munkholm, LJ, Debosz, K 2002Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term managementAgriculture, Ecosystems & Environment88195214CrossRefGoogle Scholar
  62. Scott, EM, Rattray, EAS, Prosser, JI, Killham, K, Glover, LA, Lynch, JM, Bazin, MJ 1995A mathematical model for dispersal of bacterial inoculants colonizing the wheat rhizosphereSoil Biology and Biochemistry2713071318CrossRefGoogle Scholar
  63. Semenov AM (2001) Oscillations of microbial communities in soils. Works of All-Russia Conference ‘To the 100-Anniversary from Birthday of Academician E.N. Mishustin’, 22.02.2001, MSU, Moscow (pp. 57–72), M. MAKC Press (in Russian).Google Scholar
  64. Semenov, AM, Bruggen, AHC, Diepeningen, AD, Sayler, RJ, Zelenev, VV, Vos, O 2004Wave-like development of bacterial communities and a biocontrol agent introduced in the wheat rhizospherePhytopathology94S94Google Scholar
  65. Semenov, AM, Bruggen, AHC, Zelenev, VV 1999Moving waves of bacterial populations and total organic carbon along roots of wheatMicrobial Ecology37116128PubMedCrossRefGoogle Scholar
  66. Sharma, AK, Johri, BN, Gianinazzi, S 1992Vesicular-arbuscular mycorrhizae in relation to plant-diseaseWorld Journal of Microbiology and Biotechnology8559563CrossRefGoogle Scholar
  67. Shumway, RH 1988Applied Statistical Time Series AnalysisPrentice-HallEnglewood Cliffs, NJ379Google Scholar
  68. Sivapalan, A, Morgan, WC, Franz, PR 1993Monitoring populations of soil microorganisms during a conversion from a conventional to an organic system of vegetable growingBiological Agriculture and Horticulture10927Google Scholar
  69. Smith, KP, Handelsman, J, Goodman, RM 1999Genetic basis in plants for interactions with disease-suppressive bacteriaProceedings of the National Academy of Sciences of the United States of America9647864790PubMedCrossRefGoogle Scholar
  70. Szczech, M, Shoda, M 2004Biocontrol of Rhizoctonia damping-off of tomato by Bacillus subtilis combined with Burkholderia cepacia Journal of Phytopathology152549556CrossRefGoogle Scholar
  71. Tamis WLM and van den Brink WJ (1998) Inventarisatie van ziekten en plagen in wintertarwe in gangbare, geïntegreerde en ecologische teeltsystemen in Nederland in de periode 1993–1997. IPO-DLO Rapport nr. 98-01, WageningenGoogle Scholar
  72. Tamis, WLM, Brink, WJ 1999Conventional, integrated and organic winter wheat production in the Netherlands in the period 1993–1997Agriculture, Ecosystems & Environment764759CrossRefGoogle Scholar
  73. Bruggen, AHC 1995Plant-disease severity in high-input compared to reduced-input and organic farming systemsPlant Disease79976984CrossRefGoogle Scholar
  74. Bruggen, AHC, Semenov, AM 1999A new approach to the search for indicators of root disease suppressionAustralasian Journal of Plant Pathology28410CrossRefGoogle Scholar
  75. Bruggen, AHC, Semenov, AM 2000In search of biological indicators for soil health and disease suppressionApplied Soil Ecology151324CrossRefGoogle Scholar
  76. Bruggen, AHC, Semenov, AM, Zelenev, VV 2000Wave-like distributions of microbial populations along an artificial root moving through soilMicrobial Ecology40250259PubMedGoogle Scholar
  77. Bruggen, AHC, Semenov, AM, Zelenev, VV 2002Wavelike distributions of infections by an introduced and naturally occurring root pathogen along wheat rootsMicrobial Ecology443038PubMedCrossRefGoogle Scholar
  78. Bruggen, AHC, Termorshuizen, AJ 2003Integrated approaches to root disease management in organic farming systemsAustralasian Plant Pathology32141156CrossRefGoogle Scholar
  79. Bruggen, AHC, Hiddink, GA, Semenov, AV, Semenov, AM 2004Suppression of take-all disease in soils from organic versus conventional farms in relation to native and introduced Pseudomonas fluorescens Phytopathology94S105Google Scholar
  80. van Diepeningen AD, de Vos OJ, Korthals GW and van Bruggen AHC (2005) Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Applied Soil Ecology, in press, available on line.Google Scholar
  81. Vuurde, JWL, Schippers, B 1980Bacterial colonization of seminal wheat rootsSoil Biology and Biochemistry12559565CrossRefGoogle Scholar
  82. Vilich, V 1993Crop rotation with pure stands and mixtures of barley and wheat to control stem and root rot diseasesCrop Protection12373379CrossRefGoogle Scholar
  83. Weller, DM 1988Biological control of soilborne pathogens in the rhizosphere with bacteriaAnnual Review of Phytopathology26379407CrossRefGoogle Scholar
  84. Whipps, JM 1997Developments in the biological control of soilborne plant pathogensAdvances in Botanial Research261134CrossRefGoogle Scholar
  85. Whipps, JM 2001Microbial interactions and biocontrol in the rhizosphereJournal of Experimental Botany52487511PubMedGoogle Scholar
  86. Workneh, F, Bruggen, AHC, Drinkwater, LE, Shennan, C 1993Variables associated with corky root and phytophthora root rot of tomatoes in organic and conventional farmsPhytopathology83581589Google Scholar
  87. Workneh, F, Bruggen, AHC 1994Microbial density, composition, and diversity in organically and conventionally managed rhizosphere soil in relation to suppression of corky root of tomatoesApplied Soil Ecology1219230CrossRefGoogle Scholar
  88. Zelenev VV (2004) Spatial and temporal fluctuations in bacteria, microfauna and mineral nitrogen in response to a nutrient impulse in soil. Ph.D. thesis. Wageningen University, Wageningen, the Netherlands.Google Scholar
  89. Zelenev, VV, Berkelmans, R, Bruggen, AHC, Bongers, T, Semenov, AM 2004Daily changes in bacterial-feeding nematode populations oscillate with similar periods as bacterial populations after a nutrient impulse in soilApplied Soil Ecology2693106CrossRefGoogle Scholar
  90. Zelenev, VV, Bruggen, AHC, Semenov, AM 2000“BACWAVE”, a spatial-temporal model for traveling waves of bacterial populations in response to a moving carbon source in soilMicrobial Ecology40260272PubMedGoogle Scholar
  91. Zelenev, VV, Bruggen, AHC, Semenov, AM 2005Short-term wave-like dynamics of bacterial populations in response to nutrient input from fresh plant residuesMicrobial Ecology498393PubMedCrossRefGoogle Scholar
  92. Zvjagintsev DG and Golimbet VE (1983) Dynamics of microbial number, biomass and productivity of microbial communities in soils. In: Nauka M (ed.) Successes of Microbiology, no. 18 (pp. 215–231) (In Russian).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ariena H. C. van Bruggen
    • 1
    Email author
  • Alexander M. Semenov
    • 2
  • Anne D. van Diepeningen
    • 1
  • Oscar J. de Vos
    • 1
  • Wim J. Blok
    • 1
  1. 1.Biological Farming SystemsWageningen UniversityWageningenthe Netherlands
  2. 2.Department of Microbiology, Biological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations