Advertisement

Quantification of biological age as a determinant of age-related diseases in the Rotterdam Study: a structural equation modeling approach

  • Reem WaziryEmail author
  • Luuk Gras
  • Sanaz Sedaghat
  • Henning Tiemeier
  • Gerrit J. Weverling
  • Mohsen Ghanbari
  • Jaco Klap
  • Frank de Wolf
  • Albert Hofman
  • M. Arfan Ikram
  • Jaap Goudsmit
AGEING

Abstract

Chronological age alone is not a sufficient measure of the true physiological state of the body. The aims of the present study were to: (1) quantify biological age based on a physiological biomarker composite model; (2) and evaluate its association with death and age-related disease onset in the setting of an elderly population. Using structural equation modeling we computed biological age for 1699 individuals recruited from the first and second waves of the Rotterdam study. The algorithm included nine physiological parameters (c-reactive protein, creatinine, albumin, total cholesterol, cytomegalovirus optical density, urea nitrogen, alkaline phosphatase, forced expiratory volume and systolic blood pressure). We assessed the association between biological age, all-cause mortality, all-cause morbidity and specific age-related diseases over a median follow-up of 11 years. Biological age, compared to chronological age or the traditional biomarkers of age-related diseases, showed a stronger association with all-cause mortality (HR 1.15 vs. 1.13 and 1.10), all-cause morbidity (HR 1.06 vs. 1.05 and 1.03), stroke (HR 1.17 vs. 1.08 and 1.04), cancer (HR 1.07 vs. 1.04 and 1.02) and diabetes mellitus (HR 1.12 vs. 1.01 and 0.98). Individuals who were biologically younger exhibited a healthier life-style as reflected in their lower BMI (P < 0.001) and lower incidence of stroke (P < 0.001), cancer (P < 0.01) and diabetes mellitus (P = 0.02). Collectively, our findings suggest that biological age based on the biomarker composite model of nine physiological parameters is a useful construct to assess individuals 65 years and older at increased risk for specific age-related diseases.

Keywords

Biological age Morbidity Mortality Biologically young Elderly 

Notes

Acknowledgements

The dedication and commitment by which study participants, general practitioners, and pharmacists of the Ommoord district contribute to the Rotterdam Study are gratefully acknowledged. We thank all staff at the Rotterdam Study research center, facilitating assessment of participants throughout the years, and Frank J.A. van Rooij as data manager.

Funding

The Rotterdam Study is sponsored by the Erasmus Medical Centre and Erasmus University Rotterdam, The Netherlands Organization for Scientific Research (NWO), The Netherlands Organization for Health Research and Development (ZonMW), the Research Institute for Diseases in the Elderly (RIDE), The Netherlands Genomics Initiative, the Ministry of Education, Culture and Science, the Ministry of Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. Further support was obtained from the Netherlands Consortium for Healthy Ageing. This study is supported by Janssen Prevention Centre.

Supplementary material

10654_2019_497_MOESM1_ESM.docx (13.9 mb)
Supplementary material 1 (DOCX 14235 kb)

References

  1. 1.
    Hayflick L. The future of ageing. Nature. 2000;408(6809):267–9.CrossRefGoogle Scholar
  2. 2.
    Sebastiani P, Thyagarajan B, Sun F, et al. Biomarker signatures of aging. Aging Cell. 2017;16(2):329–38.CrossRefGoogle Scholar
  3. 3.
    Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608.  https://doi.org/10.1001/jama.2013.13805.CrossRefGoogle Scholar
  4. 4.
    Burch JB, Augustine AD, Frieden LA, et al. Advances in geroscience: impact on healthspan and chronic disease. J Gerontol Ser A, Biol Sci Med Sci. 2014;69(Suppl 1):S1–3.  https://doi.org/10.1093/gerona/glu041.CrossRefGoogle Scholar
  5. 5.
    Comfort A. Test-battery to measure ageing-rate in man. Lancet. 1969;294(7635):1411–5.CrossRefGoogle Scholar
  6. 6.
    Klemera P, Doubal S. A new approach to the concept and computation of biological age. Mech Ageing Dev. 2006;127(3):240–8.CrossRefGoogle Scholar
  7. 7.
    Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol Ser A: Biomed Sci Med Sci. 2012;68(6):667–74.CrossRefGoogle Scholar
  8. 8.
    Ikram MA, Brusselle GGO, Murad SD, et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol. 2017;32:807–50.CrossRefGoogle Scholar
  9. 9.
    Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National health and nutrition examination survey data. Hyattsville, MD: CDC. http://www.cdc.gov/nchs/nhanes/nh3data.htm. Accessed May 2018.
  10. 10.
    Levine ME. Response to Dr. Mitnitski’s and Dr. Rockwood’s letter to the editor: biological age revisited. J Gerontol Ser A: Biomed Sci Med Sci. 2013;69(3):297–8.CrossRefGoogle Scholar
  11. 11.
    Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci USA. 2015;112(30):E4104–10.  https://doi.org/10.1073/pnas.1506264112.CrossRefGoogle Scholar
  12. 12.
    Yoo J, Kim Y, Cho ER, Jee SH. Biological age as a useful index to predict seventeen-year survival and mortality in Koreans. BMC Geriatr. 2017;17(1):7.CrossRefGoogle Scholar
  13. 13.
    Kreisberg RA, Kasim S. Cholesterol metabolism and aging. Am J Med. 1987;82(1b):54–60.CrossRefGoogle Scholar
  14. 14.
    Hollingsworth JW, Hashizume A, Jablon S. Correlations between tests of aging in Hiroshima subjects—an attempt to define “physiologic age”. Yale J Biol Med. 1965;38(1):11–26.Google Scholar
  15. 15.
    Takeda H, Inada H, Inoue M, Yoshikawa H, Abe H. Evaluation of biological age and physical age by multiple regression analysis. Med Inform = Medecine et informatique. 1982;7(3):221–7.CrossRefGoogle Scholar
  16. 16.
    Kroll J, Saxtrup O. On the use of regression analysis for the estimation of human biological age. Biogerontology. 2000;1(4):363–8.CrossRefGoogle Scholar
  17. 17.
    Bae CY, Kang YG, Kim S, et al. Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters. Arch Gerontol Geriatr. 2008;47(2):253–65.  https://doi.org/10.1016/j.archger.2007.08.009.CrossRefGoogle Scholar
  18. 18.
    Hofecker G, Skalicky M, Kment A, Niedermuller H. Models of the biological age of the rat. I. A factor model of age parameters. Mech Ageing Dev. 1980;14(3–4):345–59.CrossRefGoogle Scholar
  19. 19.
    Skalicky M, Hofecker G, Kment A, Niedermuller H. Models of the biological age of the rat. II. Multiple regression models in the study on influencing aging. Mech Ageing Dev. 1980;14(3–4):361–77.CrossRefGoogle Scholar
  20. 20.
    Nakamura E, Miyao K, Ozeki T. Assessment of biological age by principal component analysis. Mech Ageing Dev. 1988;46(1–3):1–18.CrossRefGoogle Scholar
  21. 21.
    Nakamura E, Miyao K. A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol Ser A, Biol Sci Med Sci. 2007;62(10):1096–105.CrossRefGoogle Scholar
  22. 22.
    MacDonald SW, Dixon RA, Cohen AL, Hazlitt JE. Biological age and 12-year cognitive change in older adults: findings from the Victoria longitudinal study. Gerontology. 2004;50(2):64–81.  https://doi.org/10.1159/000075557.CrossRefGoogle Scholar
  23. 23.
    Barzilai N, Guarente L, Kirkwood TB, Partridge L, Rando TA, Slagboom PE. The place of genetics in ageing research. Nat Rev Genet. 2012;13(8):589–94.  https://doi.org/10.1038/nrg3290.CrossRefGoogle Scholar
  24. 24.
    Heyn H, Li N, Ferreira HJ, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA. 2012;109(26):10522–7.  https://doi.org/10.1073/pnas.1120658109.CrossRefGoogle Scholar
  25. 25.
    Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235–9.CrossRefGoogle Scholar
  26. 26.
    Belsky DW, Moffitt TE, Cohen AA, et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol. 2017;187(6):1220–30.Google Scholar
  27. 27.
    Crimmins E, Vasunilashorn S, Kim JK, Alley D. Biomarkers related to aging in human populations. Adv Clin Chem. 2008;46:161–216.CrossRefGoogle Scholar
  28. 28.
    Longo VD, Antebi A, Bartke A, et al. Interventions to slow aging in humans: are we ready? Aging Cell. 2015;14(4):497–510.  https://doi.org/10.1111/acel.12338.CrossRefGoogle Scholar
  29. 29.
    de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell. 2014;157(7):1515–26.  https://doi.org/10.1016/j.cell.2014.05.031.CrossRefGoogle Scholar
  30. 30.
    Moffitt TE, Belsky DW, Danese A, Poulton R, Caspi A. The longitudinal study of aging in human young adults: knowledge gaps and research agenda. J Gerontol Ser A, Biol Sci Med Sci. 2017;72(2):210–5.  https://doi.org/10.1093/gerona/glw191.CrossRefGoogle Scholar
  31. 31.
    Kirkland JL. Translating advances from the basic biology of aging into clinical application. Exp Gerontol. 2013;48(1):1–5.  https://doi.org/10.1016/j.exger.2012.11.014.CrossRefGoogle Scholar
  32. 32.
    Kirkwood TB, Austad SN. Why do we age? Nature. 2000;408(6809):233–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Reem Waziry
    • 1
    • 2
    Email author
  • Luuk Gras
    • 3
  • Sanaz Sedaghat
    • 2
    • 4
  • Henning Tiemeier
    • 1
    • 2
    • 5
  • Gerrit J. Weverling
    • 3
  • Mohsen Ghanbari
    • 2
  • Jaco Klap
    • 3
  • Frank de Wolf
    • 3
    • 8
  • Albert Hofman
    • 1
    • 2
  • M. Arfan Ikram
    • 2
    • 6
  • Jaap Goudsmit
    • 1
    • 7
  1. 1.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA
  2. 2.Department of EpidemiologyErasmus Medical CenterRotterdamThe Netherlands
  3. 3.Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & JohnsonLeidenThe Netherlands
  4. 4.Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoUSA
  5. 5.Department of Social and Behavioral ScienceHarvard T.H. Chan School of Public HealthBostonUSA
  6. 6.Department of NeurologyErasmus Medical CenterRotterdamThe Netherlands
  7. 7.Amsterdam NeuroscienceAcademic Medical Center of the University of AmsterdamAmsterdamThe Netherlands
  8. 8.Department of Infectious Disease EpidemiologySchool of Public Health, Imperial CollegeLondonUK

Personalised recommendations