European Journal of Epidemiology

, Volume 33, Issue 4, pp 381–392 | Cite as

Utility of inverse probability weighting in molecular pathological epidemiology

  • Li Liu
  • Daniel Nevo
  • Reiko Nishihara
  • Yin Cao
  • Mingyang Song
  • Tyler S. Twombly
  • Andrew T. Chan
  • Edward L. Giovannucci
  • Tyler J. VanderWeele
  • Molin WangEmail author
  • Shuji OginoEmail author


As one of causal inference methodologies, the inverse probability weighting (IPW) method has been utilized to address confounding and account for missing data when subjects with missing data cannot be included in a primary analysis. The transdisciplinary field of molecular pathological epidemiology (MPE) integrates molecular pathological and epidemiological methods, and takes advantages of improved understanding of pathogenesis to generate stronger biological evidence of causality and optimize strategies for precision medicine and prevention. Disease subtyping based on biomarker analysis of biospecimens is essential in MPE research. However, there are nearly always cases that lack subtype information due to the unavailability or insufficiency of biospecimens. To address this missing subtype data issue, we incorporated inverse probability weights into Cox proportional cause-specific hazards regression. The weight was inverse of the probability of biomarker data availability estimated based on a model for biomarker data availability status. The strategy was illustrated in two example studies; each assessed alcohol intake or family history of colorectal cancer in relation to the risk of developing colorectal carcinoma subtypes classified by tumor microsatellite instability (MSI) status, using a prospective cohort study, the Nurses’ Health Study. Logistic regression was used to estimate the probability of MSI data availability for each cancer case with covariates of clinical features and family history of colorectal cancer. This application of IPW can reduce selection bias caused by nonrandom variation in biospecimen data availability. The integration of causal inference methods into the MPE approach will likely have substantial potentials to advance the field of epidemiology.


Etiologic heterogeneity Marginal structural model Missing at random Neoplasm Unique disease principle Selection bias 



Area under receiver-operating characteristic curve


Complete case analysis


Confidence interval


Directed acyclic graph


Hazard ratio


Inverse probability weighting


Missing at random


Mean metabolic equivalent task score


Missing completely at random


Molecular pathological epidemiology


Microsatellite instability


Nurses’ Health Study


Receiver-operating characteristic curve



We would like to thank the participants and staff of the Nurses’ Health Study for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.


This work was supported by U.S. National Institutes of Health (NIH) grants [P01 CA87969 to M.J. Stampfer; UM1 CA186107 to M.J. Stampfer; R01 CA137178 to A.T.C.; K24 DK098311 to A.T.C.; R01 CA151993 to S.O.; R35 CA197735 to S.O.; K07 CA190673 to R.N.]; and Nodal Award (to S.O.) from the Dana-Farber Harvard Cancer Center. L.L. is supported by the grant from National Natural Science Foundation of China No. 81302491, a scholarship grant from Chinese Scholarship Council and a fellowship grant from Huazhong University of Science and Technology. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10654_2017_346_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)


  1. 1.
    Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol. 2013;26(4):465–84.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ogino S, Nishihara R, VanderWeele TJ, Wang M, Nishi A, Lochhead P, Qian ZR, Zhang X, Wu K, Nan H, Yoshida K, Milner DA Jr, Chan AT, Field AE, Camargo CA Jr, Williams MA, Giovannucci EL. Review article: the role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology. 2016;27(4):602–11.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nishihara R, VanderWeele TJ, Shibuya K, Mittleman MA, Wang M, Field AE, Giovannucci E, Lochhead P, Ogino S. Molecular pathological epidemiology gives clues to paradoxical findings. Eur J Epidemiol. 2015;30(10):1129–35.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nishi A, Milner DA Jr, Giovannucci EL, Nishihara R, Tan AS, Kawachi I, Ogino S. Integration of molecular pathology, epidemiology and social science for global precision medicine. Expert Rev Mol Diagn. 2016;16(1):11–23.CrossRefPubMedGoogle Scholar
  5. 5.
    Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut. 2011;60(3):397–411.CrossRefPubMedGoogle Scholar
  6. 6.
    Richiardi L, Barone-Adesi F, Pearce N. Cancer subtypes in aetiological research. Eur J Epidemiol. 2017;32(5):353–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Drew DA, Cao Y, Chan AT. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer. 2016;16(3):173–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Chia WK, Ali R, Toh HC. Aspirin as adjuvant therapy for colorectal cancer–reinterpreting paradigms. Nat Rev Clin Oncol. 2012;9(10):561–70.CrossRefPubMedGoogle Scholar
  9. 9.
    Tougeron D, Sha D, Manthravadi S, Sinicrope FA. Aspirin and colorectal cancer: back to the future. Clin Cancer Res. 2014;20(5):1087–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Umar A, Steele VE, Menter DG, Hawk ET. Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Semin Oncol. 2016;43(1):65–77.CrossRefPubMedGoogle Scholar
  11. 11.
    Jiang MJ, Dai JJ, Gu DN, Huang Q, Tian L. Aspirin in pancreatic cancer: chemopreventive effects and therapeutic potentials. Biochim Biophys Acta. 2016;1866(2):163–76.PubMedGoogle Scholar
  12. 12.
    Coyle C, Cafferty FH, Langley RE. Aspirin and colorectal cancer prevention and treatment: is it for everyone? Curr Colorectal Cancer Rep. 2016;12:27–34.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, Imamura Y, Qian ZR, Baba Y, Shima K, Sun R, Nosho K, Meyerhardt JA, Giovannucci E, Fuchs CS, Chan AT, Ogino S. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367(17):1596–606.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nishihara R, Lochhead P, Kuchiba A, Jung S, Yamauchi M, Liao X, Imamura Y, Qian ZR, Morikawa T, Wang M, Spiegelman D, Cho E, Giovannucci E, Fuchs CS, Chan AT, Ogino S. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA. 2013;309(24):2563–71.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med. 2007;356(21):2131–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Cao Y, Nishihara R, Qian ZR, Song M, Mima K, Inamura K, Nowak JA, Drew DA, Lochhead P, Nosho K, Morikawa T, Zhang X, Wu K, Wang M, Garrett WS, Giovannucci EL, Fuchs CS, Chan AT, Ogino S. Regular aspirin use associates with lower risk of colorectal cancers with low numbers of tumor-infiltrating lymphocytes. Gastroenterology. 2016;151(5):879–92.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lu K, Tsiatis AA. Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure. Biometrics. 2001;57(4):1191–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Nevo D, Nishihara R, Ogino S, Wang M. The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure. Lifetime Data Anal. 2017. Scholar
  19. 19.
    Greenland S, Finkle WD. A critical look at methods for handling missing covariates in epidemiologic regression analyses. Am J Epidemiol. 1995;142(12):1255–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Seaman SR, White IR. Review of inverse probability weighting for dealing with missing data. Stat Methods Med Res. 2013;22(3):278–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Graff RE, Pettersson A, Lis RT, Ahearn TU, Markt SC, Wilson KM, Rider JR, Fiorentino M, Finn S, Kenfield SA, Loda M, Giovannucci EL, Rosner B, Mucci LA. Dietary lycopene intake and risk of prostate cancer defined by ERG protein expression. Am J Clin Nutr. 2016;103(3):851–60.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cox DR. Regression models and life-tables. J R Stat Soc Ser B (Methodological). 1972;34(2):187–220.Google Scholar
  23. 23.
    Wang M, Spiegelman D, Kuchiba A, Lochhead P, Kim S, Chan AT, Poole EM, Tamimi R, Tworoger SS, Giovannucci E, Rosner B, Ogino S. Statistical methods for studying disease subtype heterogeneity. Stat Med. 2016;35(5):782–800.CrossRefPubMedGoogle Scholar
  24. 24.
    Lunn M, McNeil D. Applying Cox regression to competing risks. Biometrics. 1995;51(2):524–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Ballester V, Rashtak S, Boardman L. Clinical and molecular features of young-onset colorectal cancer. World J Gastroenterol. 2016;22(5):1736–44.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M, Giovannucci EL, Fuchs CS. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58(1):90–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Lochhead P, Kuchiba A, Imamura Y, Liao X, Yamauchi M, Nishihara R, Qian ZR, Morikawa T, Shen J, Meyerhardt JA, Fuchs CS, Ogino S. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst. 2013;105(15):1151–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hernán MA, Robins JM. Causal survival analysis. In: Causal inference. Boca Raton: Chapman & Hall/CRC, forthcoming; 2018. p. 69–78.
  29. 29.
    Prentice RL, Kalbfleisch JD, Peterson AV Jr, Flournoy N, Farewell VT, Breslow NE. The analysis of failure times in the presence of competing risks. Biometrics. 1978;34(4):541–54.CrossRefPubMedGoogle Scholar
  30. 30.
    Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemiologic data. Am J Epidemiol. 2009;170(2):244–56.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schernhammer ES, Giovannuccci E, Fuchs CS, Ogino S. A prospective study of dietary folate and vitamin B and colon cancer according to microsatellite instability and KRAS mutational status. Cancer Epidemiol Biomark Prev. 2008;17(10):2895–8.CrossRefGoogle Scholar
  32. 32.
    Ogino S, Nishihara R, Lochhead P, Imamura Y, Kuchiba A, Morikawa T, Yamauchi M, Liao X, Qian ZR, Sun R, Sato K, Kirkner GJ, Wang M, Spiegelman D, Meyerhardt JA, Schernhammer ES, Chan AT, Giovannucci E, Fuchs CS. Prospective study of family history and colorectal cancer risk by tumor LINE-1 methylation level. J Natl Cancer Inst. 2013;105(2):130–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Song M, Nishihara R, Wu K, Qian ZR, Kim SA, Sukawa Y, Mima K, Inamura K, Masuda A, Yang J, Fuchs CS, Giovannucci EL, Ogino S, Chan AT. Marine omega-3 polyunsaturated fatty acids and risk of colorectal cancer according to microsatellite instability. J Natl Cancer Inst. 2015;107(4):djv007.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ogino S, Brahmandam M, Cantor M, Namgyal C, Kawasaki T, Kirkner G, Meyerhardt JA, Loda M, Fuchs CS. Distinct molecular features of colorectal carcinoma with signet ring cell component and colorectal carcinoma with mucinous component. Mod Pathol. 2006;19(1):59–68.CrossRefPubMedGoogle Scholar
  35. 35.
    Lynch KL, Ahnen DJ, Byers T, Weiss DG, Lieberman DA. First-degree relatives of patients with advanced colorectal adenomas have an increased prevalence of colorectal cancer. Clin Gastroenterol Hepatol. 2003;1(2):96–102.CrossRefPubMedGoogle Scholar
  36. 36.
    Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.CrossRefPubMedGoogle Scholar
  37. 37.
    Ogino S, Campbell PT, Nishihara R, Phipps AI, Beck AH, Sherman ME, Chan AT, Troester MA, Bass AJ, Fitzgerald KC, Irizarry RA, Kelsey KT, Nan H, Peters U, Poole EM, Qian ZR, Tamimi RM, Tchetgen Tchetgen EJ, Tworoger SS, Zhang X, Giovannucci EL, van den Brandt PA, Rosner BA, Wang M, Chatterjee N, Begg CB. Proceedings of the second international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control. 2015;26(7):959–72.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Campbell PT, Rebbeck TR, Nishihara R, Beck AH, Begg CB, Bogdanov AA, Cao Y, Coleman HG, Freeman GJ, Heng YJ, Huttenhower C, Irizarry RA, Kip NS, Michor F, Nevo D, Peters U, Phipps AI, Poole EM, Qian ZR, Quackenbush J, Robins H, Rogan PK, Slattery ML, Smith-Warner SA, Song M, VanderWeele TJ, Xia D, Zabor EC, Zhang X, Wang M, Ogino S. Proceedings of the third international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control. 2017;28(2):167–76.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hamada T, Keum N, Nishihara R, Ogino S. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol. 2017;52(3):265–75.CrossRefPubMedGoogle Scholar
  40. 40.
    Gao C. Molecular pathological epidemiology in diabetes mellitus and risk of hepatocellular carcinoma. World J Hepatol. 2016;8(27):1119–27.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rescigno T, Micolucci L, Tecce MF, Capasso A. Bioactive nutrients and nutrigenomics in age-related diseases. Molecules. 2017;22(1):E105.CrossRefPubMedGoogle Scholar
  42. 42.
    Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol. 2014;20(20):6055–72.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Martinez-Useros J, Garcia-Foncillas J. Obesity and colorectal cancer: molecular features of adipose tissue. J Transl Med. 2016;14:21.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Serafino A, Sferrazza G, Colini Baldeschi A, Nicotera G, Andreola F, Pittaluga E, Pierimarchi P. Developing drugs that target the Wnt pathway: recent approaches in cancer and neurodegenerative diseases. Expert Opin Drug Discov. 2017;12(2):169–86.CrossRefPubMedGoogle Scholar
  45. 45.
    Patil H, Saxena SG, Barrow CJ, Kanwar JR, Kapat A, Kanwar RK. Chasing the personalized medicine dream through biomarker validation in colorectal cancer. Drug Discov Today. 2017;22(1):111–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Alnabulsi A, Murray GI. Integrative analysis of the colorectal cancer proteome: potential clinical impact. Expert Rev Proteomics. 2016;13(10):917–27.CrossRefGoogle Scholar
  47. 47.
    Kuroiwa-Trzmielina J, Wang F, Rapkins RW, Rapkins RW, Ward RL, Buchanan DD, Win AK, Clendenning M, Rosty C, Southey MC, Winship IM, Hopper JL, Jenkins MA, Olivier J, Hawkins NJ, Hitchins MP. SNP rs16906252C > T is an expression and methylation quantitative trait locus associated with an increased risk of developing MGMT-methylated colorectal cancer. Clin Cancer Res. 2016;22(24):6266–77.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Slattery ML, Lee FY, Pellatt AJ, Mullany LE, Stevens JR, Samowitz WS, Wolff RK, Herrick JS. Infrequently expressed miRNAs in colorectal cancer tissue and tumor molecular phenotype. Mod Pathol. 2017;30(8):1152–69.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hughes LA, Khalid-de Bakker CA, Smits KM, van den Brandt PA, Jonkers D, Ahuja N, Herman JG, Weijenberg MP, van Engeland M. The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim Biophys Acta. 2012;1825(1):77–85.PubMedGoogle Scholar
  50. 50.
    Campbell PT, Newton CC, Newcomb PA, Phipps AI, Ahnen DJ, Baron JA, Buchanan DD, Casey G, Cleary SP, Cotterchio M, Farris AB, Figueiredo JC, Gallinger S, Green RC, Haile RW, Hopper JL, Jenkins MA, Le Marchand L, Makar KW, McLaughlin JR, Potter JD, Renehan AG, Sinicrope FA, Thibodeau SN, Ulrich CM, Win AK, Lindor NM, Limburg PJ. Association between body mass index and mortality for colorectal cancer survivors: overall and by tumor molecular phenotype. Cancer Epidemiol Biomark Prev. 2015;24(8):1229–38.CrossRefGoogle Scholar
  51. 51.
    Gray RT, Loughrey MB, Bankhead P, Cardwell CR, McQuaid S, O’Neill RF, Arthur K, Bingham V, McGready C, Gavin AT, James JA, Hamilton PW, Salto-Tellez M, Murray LJ, Coleman HG. Statin use, candidate mevalonate pathway biomarkers, and colon cancer survival in a population-based cohort study. Br J Cancer. 2017;116(12):1652–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Begg CB, Orlow I, Zabor EC, Arora A, Sharma A, Seshan VE, Bernstein JL. Identifying etiologically distinct sub-types of cancer: a demonstration project involving breast cancer. Cancer Med. 2015;4(9):1432–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Begg CB, Seshan VE, Zabor EC, Furberg H, Arora A, Shen R, Maranchie JK, Nielsen ME, Rathmell WK, Signoretti S, Tamboli P, Karam JA, Choueiri TK, Hakimi AA, Hsieh JJ. Genomic investigation of etiologic heterogeneity: methodologic challenges. BMC Med Res Methodol. 2014;14:138.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Begg CB, Zabor EC, Bernstein JL, Bernstein L, Press MF, Seshan VE. A conceptual and methodological framework for investigating etiologic heterogeneity. Stat Med. 2013;32(29):5039–52.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chatterjee N, Sinha S, Diver WR, Feigelson HS. Analysis of cohort studies with multivariate and partially observed disease classification data. Biometrika. 2010;97(3):683–98.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wang M, Kuchiba A, Ogino S. A meta-regression method for studying etiological heterogeneity across disease subtypes classified by multiple biomarkers. Am J Epidemiol. 2015;182(3):263–70.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Inamura K, Song M, Jung S, Nishihara R, Yamauchi M, Lochhead P, Qian ZR, Kim SA, Mima K, Sukawa Y, Masuda A, Imamura Y, Zhang X, Pollak MN, Mantzoros CS, Harris CC, Giovannucci E, Fuchs CS, Cho E, Chan AT, Wu K, Ogino S. Prediagnosis plasma adiponectin in relation to colorectal cancer risk according to KRAS mutation status. J Natl Cancer Inst. 2016;108(4):djv363.CrossRefPubMedGoogle Scholar
  58. 58.
    Song M, Nishihara R, Wang M, Chan AT, Qian ZR, Inamura K, Zhang X, Ng K, Kim SA, Mima K, Sukawa Y, Nosho K, Fuchs CS, Giovannucci EL, Wu K, Ogino S. Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut. 2016;65(2):296–304.CrossRefPubMedGoogle Scholar
  59. 59.
    Demissie S, LaValley MP, Horton NJ, Glynn RJ, Cupples LA. Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model. Stat Med. 2003;22(4):545–57.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Li Liu
    • 1
    • 2
    • 3
    • 4
  • Daniel Nevo
    • 5
    • 6
  • Reiko Nishihara
    • 2
    • 3
    • 6
    • 7
  • Yin Cao
    • 2
    • 8
    • 9
  • Mingyang Song
    • 2
    • 8
    • 9
  • Tyler S. Twombly
    • 1
  • Andrew T. Chan
    • 7
    • 8
    • 9
    • 10
  • Edward L. Giovannucci
    • 2
    • 6
    • 10
  • Tyler J. VanderWeele
    • 5
    • 6
  • Molin Wang
    • 5
    • 6
    • 10
    Email author
  • Shuji Ogino
    • 1
    • 3
    • 6
    • 7
    Email author
  1. 1.Department of Oncologic PathologyDana-Farber Cancer Institute and Harvard Medical SchoolBostonUSA
  2. 2.Department of NutritionHarvard T.H. Chan School of Public HealthBostonUSA
  3. 3.Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  4. 4.Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public HealthHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  5. 5.Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonUSA
  6. 6.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA
  7. 7.Broad Institute of MIT and HarvardCambridgeUSA
  8. 8.Division of GastroenterologyMassachusetts General HospitalBostonUSA
  9. 9.Clinical and Translational Epidemiology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  10. 10.Channing Division of Network Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations