European Journal of Epidemiology

, Volume 33, Issue 3, pp 263–274 | Cite as

New cancer cases in France in 2015 attributable to infectious agents: a systematic review and meta-analysis

  • Kevin David ShieldEmail author
  • Claire Marant Micallef
  • Catherine de Martel
  • Isabelle Heard
  • Francis Megraud
  • Martyn Plummer
  • Jérôme Vignat
  • Freddie Bray
  • Isabelle Soerjomataram


To provide an assessment of the burden of cancer in France in 2015 attributable to infectious agents. A systematic literature review in French representative cancer cases series was undertaken of the prevalence of infectious agents with the major associated cancer types. PubMed was searched for original studies published up to September 2016; random-effects meta-analyses were performed. Cancer incidence data were obtained from the French Cancer Registries Network, thereby allowing the calculation of national incidence estimates. The number of new cancer cases attributable to infectious agents was calculated using population-attributable fractions according to published methods. Of the 352,000 new cancer cases in France in 2015, 14,336 (4.1% of all new cancer cases) were attributable to infectious agents. The largest contributors were human papillomavirus (HPV) and Helicobacter pylori, responsible for 6333 and 4406 new cancer cases (1.8 and 1.3% of all new cancer cases) respectively. Infectious agents caused a non-negligible number of new cancer cases in France in 2015. Most of these cancers were preventable. The expansion of vaccination (i.e., for hepatitis B virus and HPV) and screen-and-treat programs (for HPV and hepatitis C virus, and possibly for H. pylori) could greatly reduce this cancer burden.


Neoplasms Infection France Prevalence Incidence Attributable fraction 



The authors would like to thank D. Max Parkin, Lesley Rushton, and Jürgen Rehm, the Steering Committee of the project entitled “Définition des priorités pour la prévention du cancer en France métropolitaine: la fraction de cancers attribuables aux modes de vie et aux facteurs environnementaux.” The authors would also like to thank the French Cancer Registries Network (FRANCIM) and Dr. Alain Monnereau for providing cancer incidence data for France.


I. Soerjomataram has received funds from L’Institut National Du Cancer (Grant No. 2015-002) for the project: “Définition des priorités pour la prévention du cancer en France métropolitaine: la fraction de cancers attribuables aux modes de vie et aux facteurs environnementaux.” C. de Martel was funded by the Fondation de France (Grant No. 00039621).

Compliance with ethical standards

Ethics approval

Ethics approval was not required, as this study involved secondary data analyses only. This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10654_2017_334_MOESM1_ESM.docx (327 kb)
Supplementary material 1 (DOCX 326 kb)


  1. 1.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans: volume 100B—biological agents. Lyon, France: International Agency for Research on Cancer; 2009.Google Scholar
  2. 2.
    Parkin D. Cancers attributable to infection in the UK in 2010. Br J Cancer. 2011;105:S49–56.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Antonsson A, Wilson LF, Kendall BJ, Bain CJ, Whiteman DC, Neale RE. Cancers in Australia in 2010 attributable to infectious agents. Aust N Z J Public Health. 2015;39(5):446–51.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Odutola M, Jedy-Agba EE, Dareng EO, et al. Burden of cancers attributable to infectious agents in Nigeria: 2012–2014. Front Oncol. 2016;6:216.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    International Agency for Research on Cancer. Attributable causes of cancer in France in the year 2000. Lyon: International Agency for Research on Cancer; 2007.Google Scholar
  6. 6.
    Pisani P, Parkin DM, Munoz N, Ferlay J. Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol Biomarkers Prev. 1997;6(6):387–400.PubMedGoogle Scholar
  7. 7.
    De Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4(9):e609–16.CrossRefPubMedGoogle Scholar
  9. 9.
    Fonteneau L, Guthmann J, Lévy-Bruhl D. Estimation des couvertures vaccinales en France à partir de l’Échantillon généraliste des bénéficiaires (EGB): exemples de la rougeole, de l’hépatite B et de la vaccination HPV. Bull Epidemiol Hebd. 2013;8:72–6.Google Scholar
  10. 10.
    Chiao EY, Giordano TP, Palefsky JM, Tyring S, El Serag H. Screening HIV-infected individuals for anal cancer precursor lesions: a systematic review. Clin Infect Dis. 2006;43(2):223–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Vaccarella S, Franceschi S, Engholm G, Lonnberg S, Khan S, Bray F. 50 years of screening in the Nordic countries: quantifying the effects on cervical cancer incidence. Br J Cancer. 2014;111(5):965–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Herrero R, Park JY, Forman D. The fight against gastric cancer–the IARC Working Group report. Best Pract Res Clin Gastroenterol. 2014;28(6):1107–14.CrossRefPubMedGoogle Scholar
  13. 13.
    International Agency for Research on Cancer. Global Cancer Observatory: cancer causes: infection. International Agency for Research on Cancer, Lyon, France. 2017. Accessed 1 Oct 2017.
  14. 14.
    Hausfater P, Cacoub P, Sterkers Y, et al. Hepatitis C virus infection and lymphoproliferative diseases: prospective study on 1576 patients in France. Am J Hematol. 2001;67(3):168–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Santé Pays de la Loire. Le réseau FRANCIM: Les registres des cancers en France. Nantes: Santé Pays de la Loire; 2015.Google Scholar
  16. 16.
    Institut national de la statistique et des études économiques. Statistical operation: Population estimates. Paris, France: Institut national de la statistique et des études économiques; 2015.Google Scholar
  17. 17.
    Moher D, Liberati A, Tetzlaff J, Altman D, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Br Med J. 2009;339:b2535.CrossRefGoogle Scholar
  18. 18.
    Ndiaye C, Mena M, Alemany L, et al. HPV DNA, E6/E7 mRNA, and p16 INK4a detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol. 2014;15(12):1319–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRefPubMedGoogle Scholar
  20. 20.
    R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008.Google Scholar
  21. 21.
    StataCorp. Stata Statistical Software: Release 14. College Station, USA: StataCorp LP; 2015.Google Scholar
  22. 22.
    Levy M, Hammel P, Lamarque D, et al. Endoscopic ultrasonography for the initial staging and follow-up in patients with low-grade gastric lymphoma of mucosa-associated lymphoid tissue treated medically. Gastrointest Endosc. 1997;46(4):328–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Delchier JC, Lamarque D, Levy M, et al. Helicobacter pylori and gastric lymphoma: high seroprevalence of CagA in diffuse large B-cell lymphoma but not in low-grade lymphoma of mucosa-associated lymphoid tissue type. Am J Gastroenterol. 2001;96(8):2324–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Lehours P, Ruskone-Fourmestraux A, Lavergne A, Cantet F, Megraud F. Which test to use to detect Helicobacter pylori infection in patients with low-grade gastric mucosa-associated lymphoid tissue lymphoma? Am J Gastroenterol. 2003;98(2):291–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Levy M, Copie-Bergman C, Gameiro C, et al. Prognostic value of translocation t(11;18) in tumoral response of low-grade gastric lymphoma of mucosa-associated lymphoid tissue type to oral chemotherapy. J Clin Oncol. 2005;23(22):5061–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Fouret P, Martin F, Flahault A, Saint-Guily JL. Human papillomavirus infection in the malignant and premalignant head and neck epithelium. Diagn Mol Pathol. 1995;4(2):122–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Fouret P, Monceaux G, Temam S, Lacourreye L, St Guily JL. Human papillomavirus in head and neck squamous cell carcinomas in nonsmokers. Arch Otolaryngol Head Neck Surg. 1997;123(5):513–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Soria JC, Morat L, Commo F, et al. Telomerase activation cooperates with inactivation of p16 in early head and neck tumorigenesis. Br J Cancer. 2001;84(4):504–11.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Humbey O, Cairey-Remonnay S, Guerrini JS, et al. Detection of the human papillomavirus and analysis of the TP53 polymorphism of exon 4 at codon 72 in penile squamous cell carcinomas. Eur J Cancer. 2003;39(5):684–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Perceau G, Derancourt C, Clavel C, et al. Lichen sclerosus is frequently present in penile squamous cell carcinomas but is not always associated with oncogenic human papillomavirus. Br J Dermatol. 2003;148(5):934–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Cornu JN, Comperat E, Renard-Penna R, et al. Can a standard treatment be proposed for penile cancer? Prog Urol. 2007;17(7):1347–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Charfi L, Jouffroy T, de Cremoux P, et al. Two types of squamous cell carcinoma of the palatine tonsil characterized by distinct etiology, molecular features and outcome. Cancer Lett. 2008;260(1–2):72–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Jung AC, Briolat J, Millon R, et al. Biological and clinical relevance of transcriptionally active human papillomavirus (HPV) infection in oropharynx squamous cell carcinoma. Int J Cancer. 2010;126(8):1882–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Abramowitz L, Jacquard AC, Jaroud F, et al. Human papillomavirus genotype distribution in anal cancer in France: the EDiTH V study. Int J Cancer. 2011;129(2):433–9.CrossRefPubMedGoogle Scholar
  35. 35.
    St Guily JL, Clavel C, Okais C, et al. Human papillomavirus genotype distribution in tonsil cancers. Head Neck Oncol. 2011;3(1):6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    St Guily JL, Jacquard AC, Pretet JL, et al. Human papillomavirus genotype distribution in oropharynx and oral cavity cancer in France—The EDiTH VI study. J Clin Virol. 2011;51(2):100–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Gavid M, Pillet S, Pozzetto B, et al. Human papillomavirus and head and neck squamous cell carcinomas in the South-East of France: prevalence, viral expression, and prognostic implications. Acta Otolaryngol. 2013;133(5):538–43.CrossRefPubMedGoogle Scholar
  38. 38.
    Valmary-Degano S, Jacquin E, Pretet JL, et al. Signature patterns of human papillomavirus type 16 in invasive anal carcinoma. Hum Pathol. 2013;44(6):992–1002.CrossRefPubMedGoogle Scholar
  39. 39.
    Jung AC, Job S, Ledrappier S, et al. A poor prognosis subtype of HNSCC is consistently observed across methylome, transcriptome, and miRNome analysis. Clin Cancer Res. 2013;19(15):4174–84.CrossRefPubMedGoogle Scholar
  40. 40.
    Melkane AE, Auperin A, Saulnier P, et al. Human papillomavirus prevalence and prognostic implication in oropharyngeal squamous cell carcinomas. Head Neck. 2014;36(2):257–65.CrossRefPubMedGoogle Scholar
  41. 41.
    Melkane AE, Mirghani H, Auperin A, et al. HPV-related oropharyngeal squamous cell carcinomas: a comparison between three diagnostic approaches. Am J Otolaryngol. 2014;35(1):25–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Arana R, Flejou JF, Si-Mohamed A, Bauer P, Etienney I. Clinicopathological and virological characteristics of superficially invasive squamous-cell carcinoma of the anus. Colorectal Dis. 2015;17(11):965–72.CrossRefPubMedGoogle Scholar
  43. 43.
    Fonmarty D, Cherriere S, Fleury H, et al. Study of the concordance between p16 immunohistochemistry and HPV-PCR genotyping for the viral diagnosis of oropharyngeal squamous cell carcinoma. Eur Ann Otorhinolaryngol Head Neck Dis. 2015;132(3):135–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Hanns E, Job S, Coliat P, et al. Human Papillomavirus-related tumours of the oropharynx display a lower tumour hypoxia signature. Oral Oncol. 2015;51(9):848–56.CrossRefPubMedGoogle Scholar
  45. 45.
    Ou D, Levy A, Blanchard P, et al. Concurrent chemoradiotherapy with cisplatin or cetuximab for locally advanced head and neck squamous cell carcinomas: does human papilloma virus play a role? Oral Oncol. 2016;59:50–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Bauduer F, Katsahian S, Blanchard Y, Oui B, Capdupuy C, Renoux M. Descriptive epidemiology of non-Hodgkin lymphomas in a southwestern French hematology center: absence of significant relationship with hepatitis C virus infection. Hematol Cell Ther. 1999;41(5):191–3.CrossRefPubMedGoogle Scholar
  47. 47.
    Germanidis G, Haioun C, Pourquier J, et al. Hepatitis C virus infection in patients with overt B-cell non-Hodgkin’s lymphoma in a French center. Blood. 1999;93(5):1778–9.PubMedGoogle Scholar
  48. 48.
    Seve P, Renaudier P, Sasco AJ, et al. Hepatitis C virus infection and B-cell non-Hodgkin’s lymphoma: a cross-sectional study in Lyon, France. Eur J Gastroenterol Hepatol. 2004;16(12):1361–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Le Bail B, Faouzi S, Boussarie L, et al. Osteonectin/SPARC is overexpressed in human hepatocellular carcinoma. J Pathol. 1999;189(1):46–52.CrossRefPubMedGoogle Scholar
  50. 50.
    Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. 2001;120(7):1763–73.CrossRefPubMedGoogle Scholar
  51. 51.
    Wei Y, Van Nhieu JT, Prigent S, Srivatanakul P, Tiollais P, Buendia MA. Altered expression of E-cadherin in hepatocellular carcinoma: correlations with genetic alterations, beta-catenin expression, and clinical features. Hepatology. 2002;36(3):692–701.CrossRefPubMedGoogle Scholar
  52. 52.
    Borie F, Bouvier AM, Herrero A, et al. Treatment and prognosis of hepatocellular carcinoma: a population based study in France. J Surg Oncol. 2008;98(7):505–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Pineau P, Marchio A, Battiston C, et al. Chromosome instability in human hepatocellular carcinoma depends on p53 status and aflatoxin exposure. Mutat Res. 2008;653(1–2):6–13.CrossRefPubMedGoogle Scholar
  54. 54.
    Brousset P, Chittal S, Schlaifer D, et al. Detection of Epstein–Barr virus messenger RNA in Reed-Sternberg cells of Hodgkin’s disease by in situ hybridization with biotinylated probes on specially processed modified acetone methyl benzoate xylene (ModAMeX) sections. Blood. 1991;77(8):1781–6.PubMedGoogle Scholar
  55. 55.
    Delsol G, Brousset P, Chittal S, Rigal-Huguet F. Correlation of the expression of Epstein–Barr virus latent membrane protein and in situ hybridization with biotinylated BamHI-W probes in Hodgkin’s disease. Am J Pathol. 1992;140(2):247–53.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Brousset P, Rochaix P, Chittal S, Rubie H, Robert A, Delsol G. High incidence of Epstein–Barr virus detection in Hodgkin’s disease and absence of detection in anaplastic large-cell lymphoma in children. Histopathology. 1993;23(2):189–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Martel-Renoir D, Grunewald V, Touitou R, Schwaab G, Joab I. Qualitative analysis of the expression of Epstein–Barr virus lytic genes in nasopharyngeal carcinoma biopsies. J Gen Virol. 1995;76(Pt 6):1401–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Belkaid MI, Briere J, Djebbara Z, Beldjord K, Andrieu JM, Colonna P. Comparison of Epstein–Barr virus markers in Reed–Sternberg cells in adult Hodgkin’s disease tissues from an industrialized and a developing country. Leuk Lymphoma. 1995;17(1–2):163–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Brousset P, Benharroch D, Krajewski S, et al. Frequent expression of the cell death-inducing gene Bax in Reed–Sternberg cells of Hodgkin’s disease. Blood. 1996;87(6):2470–5.PubMedGoogle Scholar
  60. 60.
    Drouet E, Brousset P, Fares F, et al. High Epstein-Barr virus serum load and elevated titers of anti-ZEBRA antibodies in patients with EBV-harboring tumor cells of Hodgkin’s disease. J Med Virol. 1999;57(4):383–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Besson C, Roetynck S, Williams F, et al. Association of killer cell immunoglobulin-like receptor genes with Hodgkin’s lymphoma in a familial study. PLoS ONE. 2007;2(5):e406.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Chetaille B, Bertucci F, Finetti P, et al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood. 2009;113(12):2765–3775.CrossRefPubMedGoogle Scholar
  63. 63.
    Ghesquieres H, Maurer MJ, Casasnovas O, et al. Cytokine gene polymorphisms and progression-free survival in classical Hodgkin lymphoma by EBV status: results from two independent cohorts. Cytokine. 2013;64(2):523–31.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    De Vuyst H, Clifford G, Li N, Franceschi S. HPV infection in Europe. Eur J Cancer. 2009;45(15):2632–9.CrossRefPubMedGoogle Scholar
  65. 65.
    González C, Megraud F, Buissonniere A, et al. Helicobacter pylori infection assessed by ELISA and by immunoblot and noncardia gastric cancer risk in a prospective study: the Eurgast-EPIC project. Ann Oncol. 2012;23(5):1320–4.CrossRefPubMedGoogle Scholar
  66. 66.
    Sharma S, Carballo M, Feld JJ, Janssen HL. Immigration and viral hepatitis. J Hepatol. 2015;63(2):515–22.CrossRefPubMedGoogle Scholar
  67. 67.
    Marcellin P, Pequignot F, Delarocque-Astagneau E, et al. Mortality related to chronic hepatitis B and chronic hepatitis C in France: evidence for the role of HIV coinfection and alcohol consumption. J Hepatol. 2008;48(2):200–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Bosch FX, Ribes J, Díaz M, Cléries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127(5):S5–16.CrossRefPubMedGoogle Scholar
  69. 69.
    Grywalska E, Rolinski J. Semin Oncol. 2015;42(2):291–303.CrossRefPubMedGoogle Scholar
  70. 70.
    Petrara MR, Cattelan AM, Zanchetta M, et al. Epstein–Barr virus load and immune activation in human immunodeficiency virus type 1-infected patients. J Clin Virol. 2012;53(3):195–200.CrossRefPubMedGoogle Scholar
  71. 71.
    Institut De Veille Sanitaire. Estimation des couvertures vaccinales en secteur libéral à travers l’échantillon généraliste des bénéficiaires en France—2004–2009. Saint-Maurice: Institut De Veille Sanitaire; 2010.Google Scholar
  72. 72.
    Fagot JP, Boutrelle A, Ricordeau P, Weill A, Allemand H. HPV vaccination in France: uptake, costs and issues for the National Health Insurance. Vaccine. 2011;29(19):3610–6.CrossRefPubMedGoogle Scholar
  73. 73.
    Mehanna H, Beech T, Nicholson T, et al. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer—systematic review and meta-analysis of trends by time and region. Head Neck. 2013;35(5):747–55.CrossRefPubMedGoogle Scholar
  74. 74.
    Thibault V, Laperche S, Thiers V, et al. Molecular epidemiology and clinical characteristics of hepatitis B identified through the French mandatory notification system. PLoS ONE. 2013;8(9):e75267.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yang T, Cairns BJ, Reeves GK, Green J, Beral V. Cancer risk among 21st century blood transfusion recipients. Ann Oncol. 2017;28(2):393–9.PubMedGoogle Scholar
  76. 76.
    Aherfi S, Colson P, Audoly G, et al. Marseillevirus in lymphoma: a giant in the lymph node. Lancet Infect Dis. 2016;16(10):e225–34.CrossRefPubMedGoogle Scholar
  77. 77.
    Chang M-H, You S-L, Chen C-J, et al. Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees: a 20-year follow-up study. J Natl Cancer Inst. 2009;101(19):1348–55.CrossRefPubMedGoogle Scholar
  78. 78.
    Barnabas RV, Laukkanen P, Koskela P, Kontula O, Lehtinen M, Garnett GP. Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: mathematical modelling analyses. PLoS Med. 2006;3(5):e138.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Balinska MA. Hepatitis B vaccination and French Society ten years after the suspension of the vaccination campaign: how should we raise infant immunization coverage rates? J Clin Virol. 2009;46(3):202–5.CrossRefPubMedGoogle Scholar
  80. 80.
    Agence Nationale d’Accréditation et d’Évaluation en Santé, Institut national de la santé et de la recherche médicale. Consensus conference: vaccination against the hepatitis B virus 10–11 September 2003 Xavier-Bichat Medical School—Paris: Guidelines. Saint-Denis, France: Agence Nationale d’Accréditation et d’Évaluation en Santé; 2004.Google Scholar
  81. 81.
    Fonteneau L, Ragot M, Guthmann J-P, Lévy-Bruhl D. Use of health care reimbursement data to estimate vaccination coverage in France: example of hepatitis B, meningitis C, and human papillomavirus vaccination. Rev Epidemiol Sante Publ. 2015;63(5):293–8.CrossRefGoogle Scholar
  82. 82.
    Reagan-Steiner S, Yankey D, Jeyarajah J, et al. National, regional, state, and selected local area vaccination coverage among adolescents aged 13–17 years—United States, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(33):850–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Brotherton J, Murray SL, Hall MA, et al. Human papillomavirus vaccine coverage among female Australian adolescents: success of the school-based approach. Med J Aust. 2013;199(9):614–7.CrossRefPubMedGoogle Scholar
  84. 84.
    Public Health England. Human Papillomavirus (HPV) vaccination coverage in adolescent females in England: 2015/16. London: Public Health England; 2016.Google Scholar
  85. 85.
    Institut De Veille Sanitaire. Modélisation médico-économique de l’impact de l’organisation du dépistage du cancer du col utérin et de l’introduction de la vaccination contre les HPV dans le calendrier vaccinal. Saint-Maurice: Institut De Veille Sanitaire; 2007.Google Scholar
  86. 86.
    Haesebaert J, Lutringer-Magnin D, Kalecinski J, et al. French women’s knowledge of and attitudes towards cervical cancer prevention and the acceptability of HPV vaccination among those with 14–18 year old daughters: a quantitative-qualitative study. BMC Public Health. 2012;12(1):1034.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Markowitz LE, Tsu V, Deeks SL, et al. Human papillomavirus vaccine introduction–the first five years. Vaccine. 2012;30:F139–48.CrossRefPubMedGoogle Scholar
  88. 88.
    Haut Conseil de santé publique. Avis relatif à la révision de l’âge de vaccination contre les infections à papaillomavirus humains des jeunes filles. Paris: Haut Conseil de Santé Publique; 2012.Google Scholar
  89. 89.
    Haut Conseil de la Santé Publique. Vaccination des garçons contre les infections à papillomavirus. Paris: Haut Conseil de la Santé Publique; 2016.Google Scholar
  90. 90.
    Centres for Disease Control and Prevention. HPV vaccines: vaccinating your preteen or teen. Atlanta: Centres for Disease Control and Prevention; 2017.Google Scholar
  91. 91.
    Chesson HW, Ekwueme DU, Saraiya M, Dunne EF, Markowitz LE. The cost-effectiveness of male HPV vaccination in the United States. Vaccine. 2011;29(46):8443–50.CrossRefPubMedGoogle Scholar
  92. 92.
    Ford AC, Forman D, Hunt RH, Yuan Y, Moayyedi P. Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: systematic review and meta-analysis of randomised controlled trials. BMJ. 2014;348:g3174.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Piroth L, Rabaud C, Rey D, et al. Hepatitis C: the path towards effective universal therapy. Lancet. 2016;388(10049):1051–2.CrossRefPubMedGoogle Scholar
  94. 94.
    Czernichow P. Hépatites b et c: mieux savoir pour mieux agir. Bull Epidemiol Hebd. 2016;13–14:222–3.Google Scholar
  95. 95.
    Bottero J, Brouard C, Roudot-Thoraval F, et al. 2014 French guidelines for hepatitis B and C screening: a combined targeted and mass testing strategy of chronic viruses namely HBV, HCV and HIV. Liver Int. 2016;36(10):1442–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Malfertheiner P, Megraud F, O’Morain C, et al. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut. 2007;56(6):772–81.CrossRefPubMedGoogle Scholar
  97. 97.
    Megraud F, Coenen S, Versporten A, et al. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut. 2013;62(1):34–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Kevin David Shield
    • 1
    Email author
  • Claire Marant Micallef
    • 1
  • Catherine de Martel
    • 2
  • Isabelle Heard
    • 3
    • 4
  • Francis Megraud
    • 5
  • Martyn Plummer
    • 2
  • Jérôme Vignat
    • 1
  • Freddie Bray
    • 1
  • Isabelle Soerjomataram
    • 1
  1. 1.Section of Cancer SurveillanceInternational Agency for Research on CancerLyon Cedex 08France
  2. 2.Infections and Cancer Epidemiology GroupInternational Agency for Research on CancerLyonFrance
  3. 3.Prevention and Implementation GroupInternational Agency for Research on CancerLyonFrance
  4. 4.Hospital Tenon, AP-HPParisFrance
  5. 5.Laboratoire de BactériologieHôpital PellegrinBordeauxFrance

Personalised recommendations