Advertisement

European Journal of Epidemiology

, Volume 32, Issue 10, pp 867–879 | Cite as

Meta-analytic evaluation of the association between head injury and risk of amyotrophic lateral sclerosis

  • Yukari Watanabe
  • Takamitsu Watanabe
META-ANALYSIS

Abstract

Head injury is considered as a potential risk factor for amyotrophic lateral sclerosis (ALS). However, several recent studies have suggested that head injury is not a cause, but a consequence of latent ALS. We aimed to evaluate such a possibility of reverse causation with meta-analyses considering time lags between the incidence of head injuries and the occurrence of ALS. We searched Medline and Web of Science for case–control, cross-sectional, or cohort studies that quantitatively investigated the head-injury-related risk of ALS and were published until 1 December 2016. After selecting appropriate publications based on PRISMA statement, we performed random-effects meta-analyses to calculate odds ratios (ORs) and 95% confidence intervals (CI). Sixteen of 825 studies fulfilled the eligibility criteria. The association between head injuries and ALS was statistically significant when the meta-analysis included all the 16 studies (OR 1.45, 95% CI 1.21–1.74). However, in the meta-analyses considering the time lags between the experience of head injuries and diagnosis of ALS, the association was weaker (OR 1.21, 95% CI 1.01–1.46, time lag ≥ 1 year) or not significant (e.g. OR 1.16, 95% CI 0.84–1.59, time lag ≥ 3 years). Although it did not deny associations between head injuries and ALS, the current study suggests a possibility that such a head-injury-oriented risk of ALS has been somewhat overestimated. For more accurate evaluation, it would be necessary to conduct more epidemiological studies that consider the time lags between the occurrence of head injuries and the diagnosis of ALS.

Keywords

Amyotrophic lateral sclerosis Motor neuron disease Head trauma Reverse causation 

Notes

Acknowledgements

We acknowledge Dr Valentina Gallo for her support. TW acknowledges the support from European Commission.

Author contribution

YW designed the study. YW and TW conducted the analyses and wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10654_2017_327_MOESM1_ESM.docx (248 kb)
Supplementary material 1 (DOCX 248 kb)

References

  1. 1.
    Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344:1688–700.CrossRefPubMedGoogle Scholar
  2. 2.
    Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. 2013;41:118–30.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10:661–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Haley RW. Excess incidence of ALS in young Gulf War veterans. Neurology. 2003;61:750–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Horner RD, Kamins KG, Feussner JR, Grambow SC, Hoff-Lindquist J, Harati Y, et al. Occurrence of amyotrophic lateral sclerosis among Gulf War veterans. Neurology. 2003;61:742–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Weisskopf MG, O’Reilly EJ, McCullough ML, Calle EE, Thun MJ, Cudkowicz M, et al. Prospective study of military service and mortality from ALS. Neurology. 2005;64:32–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Longstreth WT, McGuire V, Koepsell TD, Wang Y, van Belle G. Risk of amyotrophic lateral sclerosis and history of physical activity: a population-based case-control study. Arch Neurol. 1998;55:201–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Scarmeas N, Shih T, Stern Y, Ottman R, Rowland LP. Premorbid weight, body mass, and varsity athletics in ALS. Neurology. 2002;59:773–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Chiò A, Benzi G, Dossena M, Mutani R, Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128:472–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Veldink JH, Kalmijn S, Groeneveld GJ, Titulaer MJ, Wokke JHJ, van den Berg LH. Physical activity and the association with sporadic ALS. Neurology. 2005;64:241–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Felmus MT, Patten BM, Swanke L. Antecedent events in amyotrophic lateral sclerosis. Neurology. 1976;26:167–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Gallo V, Vanacore N, Bueno-de-Mesquita HB, Vermeulen R, Brayne C, Pearce N, et al. Physical activity and risk of amyotrophic lateral sclerosis in a prospective cohort study. Eur J Epidemiol. 2016;31:255–66.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Abhinav K, Al-Chalabi A, Hortobagyi T, Leigh PN. Electrical injury and amyotrophic lateral sclerosis: a systematic review of the literature. J Neurol Neurosurg Psychiatry. 2007;78:450–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Gallo V, Bueno-de-Mesquita HB, Vermeulen R, Andersen PM, Kyrozis A, Linseisen J, et al. Smoking and risk for amyotrophic lateral sclerosis: analysis of the EPIC cohort. Ann Neurol. 2009;65:378–85.CrossRefPubMedGoogle Scholar
  15. 15.
    Kamel F, Umbach DM, Hu H, Munsat TL, Shefner JM, Taylor JA, et al. Lead exposure as a risk factor for amyotrophic lateral sclerosis. Neurodegener Dis. 2005;2:195–201.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang N, Gray M, Lu X-H, Cantle JP, Holley SM, Greiner E, et al. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med. 2014;20:536–41.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Perl DP, Gajdusek DC, Garruto RM, Yanagihara RT, Gibbs CJ. Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam. Science. 1982;217:1053–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Gresham LS, Molgaard CA, Golbeck AL, Smith R. Amyotrophic lateral sclerosis and occupational heavy metal exposure: a case-control study. Neuroepidemiology. 1986;5:29–38.CrossRefPubMedGoogle Scholar
  19. 19.
    Mitchell JD. Heavy metals and trace elements in amyotrophic lateral sclerosis. Neurol Clin. 1987;5:43–60.PubMedGoogle Scholar
  20. 20.
    Armon C, Kurland LT, Daube JR, O’Brien PC. Epidemiologic correlates of sporadic amyotrophic lateral sclerosis. Neurology. 1991;41:1077–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Peters TL, Fang F, Weibull CE, Sandler DP, Kamel F, Ye W. Severe head injury and amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14:267–72.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fournier CN, Gearing M, Upadhyayula SR, Klein M, Glass JD. Head injury does not alter disease progression or neuropathologic outcomes in ALS. Neurology. 2015;84:1788–95.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Perry DC, Sturm VE, Peterson MJ, Pieper CF, Bullock T, Boeve BF, et al. Association of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis. J Neurosurg. 2016;124:511–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen H, Richard M, Sandler DP, Umbach DM, Kamel F. Head injury and amyotrophic lateral sclerosis. Am J Epidemiol. 2007;166:810–6.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fondell E, Fitzgerald KC, Falcone GJ, O’Reilly EJ, Ascherio A. Early-onset alopecia and amyotrophic lateral sclerosis: a cohort study. Am J Epidemiol. 2013;178:1146–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pearce N, Gallo V, McElvenny D. Head trauma in sport and neurodegenerative disease: an issue whose time has come? Neurobiol Aging. 2015;36:1383–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Schmidt S, Kwee LC, Allen KD, Oddone EZ. Association of ALS with head injury, cigarette smoking and APOE genotypes. J Neurol Sci. 2010;291:22–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Turner MR, Abisgold J, Yeates DGR, Talbot K, Goldacre MJ. Head and other physical trauma requiring hospitalisation is not a significant risk factor in the development of ALS. J Neurol Sci. 2010;288:45–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535–b25345.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–309.CrossRefPubMedGoogle Scholar
  31. 31.
    Pupillo E, Messina P, Logroscino G, Zoccolella S, Chiò A, Calvo A, et al. Trauma and amyotrophic lateral sclerosis: a case-control study from a population-based registry. Eur J Neurol. 2012;19:1509–17.CrossRefPubMedGoogle Scholar
  32. 32.
    Binazzi A, Belli S, Uccelli R, Desiato MT, Talamanca IF, Antonini G, et al. An exploratory case-control study on spinal and bulbar forms of amyotrophic lateral sclerosis in the province of Rome. Amyotroph Lateral Scler. 2009;10:361–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Seals RM, Hansen J, Gredal O, Weisskopf MG. Physical trauma and amyotrophic lateral sclerosis: a population-based study using Danish National registries. Am J Epidemiol. 2016;183:294–301.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Savica R, Parisi JE, Wold LE, Josephs KA, Ahlskog JE. High school football and risk of neurodegeneration: a community-based study. Mayo Clin Proc. 2012;87:335–40.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kurtzke JF, Beebe GW. Epidemiology of amyotrophic lateral sclerosis 1. A case-control comparison based on ALS deaths. Neurology. 1980;30:453–63.CrossRefPubMedGoogle Scholar
  36. 36.
    Kondo K, Tsubaki T. Case-control studies of motor neuron disease: association with mechanical injuries. Arch Neurol. 1981;38:220–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Deapen DM, Henderson BE. A case-control study of amyotrophic lateral sclerosis. Am J Epidemiol. 1986;123:790–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Gallagher JP, Sanders M. Trauma and amyotrophic lateral sclerosis: a report of 78 patients. Acta Neurol Scand. 1987;75:145–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Granieri E, Carreras M, Tola R, Paolino E, Tralli G, Eleopra R, et al. Motor neuron disease in the province of Ferrara, Italy, in 1964–1982. Neurology. 1988;38:1604–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Chiò A, Meineri P, Tribolo A, Schiffer D. Risk factors in motor neuron disease: a case-control study. Neuroepidemiology. 1991;10:174–84.CrossRefPubMedGoogle Scholar
  41. 41.
    Williams DB, Annegers JF, Kokmen E, O’Brien PC, Kurland LT. Brain injury and neurologic sequelae: a cohort study of dementia, parkinsonism, and amyotrophic lateral sclerosis. Neurology. 1991;41:1554–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Seelen M, van Doormaal PTC, Visser AE, Huisman MHB, Roozekrans MHJ, de Jong SW, et al. Prior medical conditions and the risk of amyotrophic lateral sclerosis. J Neurol. 2014;261:1949–56.CrossRefPubMedGoogle Scholar
  43. 43.
    Jafari S, Etminan M, Aminzadeh F, Samii A. Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Mov Disord. 2013;28:1222–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Li Y, Li Y, Li X, Zhang S, Zhao J, Zhu X, et al. Head injury as a risk factor for dementia and Alzheimer’s disease: a systematic review and meta-analysis of 32 observational studies. PLoS ONE. 2017;12:e0169650.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lunny CA, Fraser SN, Knopp-Sihota JA. Physical trauma and risk of multiple sclerosis: a systematic review and meta-analysis of observational studies. J Neurol Sci. 2014;336:13–23.CrossRefPubMedGoogle Scholar
  46. 46.
    Armon C, Nelson LM. Is head trauma a risk factor for amyotrophic lateral sclerosis? An evidence based review. Amyotroph Lateral Scler. 2012;13:351–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Pinto S, Swash M, de Carvalho M. Does surgery accelerate progression of amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry. 2014;85:643–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Hamidou B, Couratier P, Besançon C, Nicol M, Preux PM, Marin B. Epidemiological evidence that physical activity is not a risk factor for ALS. Eur J Epidemiol. 2014;29:459–75.CrossRefPubMedGoogle Scholar
  49. 49.
    Chancellor AM, Warlow CP. Adult onset motor neuron disease: worldwide mortality, incidence and distribution since 1950. J Neurol Neurosurg Psychiatry. 1992;55:1106–15.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Phukan J, Pender NP, Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 2007;6:994–1003.CrossRefPubMedGoogle Scholar
  51. 51.
    Wicks P. Hypothesis: higher prenatal testosterone predisposes ALS patients to improved athletic performance and manual professions. Amyotroph Lateral Scler. 2012;13:251–3.CrossRefPubMedGoogle Scholar
  52. 52.
    Warren SA, Olivo SA, Contreras JF, Turpin KVL, Gross DP, Carroll LJ, et al. Traumatic injury and multiple sclerosis: a systematic review and meta-analysis. Can J Neurol Sci. 2013;40:168–76.CrossRefPubMedGoogle Scholar
  53. 53.
    Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki I. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14:263–73.CrossRefPubMedGoogle Scholar
  54. 54.
    Jafari S, Etminan M, Aminzadeh F, Samii A. Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Mov Disord. 2013;28:1222–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012;72:893–901.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kenborg L, Rugbjerg K, Lee P-C, Ravnskjær L, Christensen J, Ritz B, et al. Head injury and risk for Parkinson disease: results from a Danish case-control study. Neurology. 2015;84:1098–103.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Crane PK, Gibbons LE, Dams-O’Connor K, Trittschuh E, Leverenz JB, Keene CD, et al. Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathologic findings. JAMA Neurol. 2016;73:1062–9.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Weiner MW, Crane PK, Montine TJ, Bennett DA, Veitch DP. Traumatic brain injury may not increase the risk of Alzheimer disease. Neurology. 2017. doi: 10.1212/WNL.0000000000004608.PubMedCentralGoogle Scholar
  59. 59.
    Román GC. Neuroepidemiology of amyotrophic lateral sclerosis: clues to aetiology and pathogenesis. J Neurol Neurosurg Psychiatry. 1996;61:131–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cronin S, Hardiman O, Traynor BJ. Ethnic variation in the incidence of ALS: a systematic review. Neurology. 2007;68:1002–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Wolfson C, Kilborn S, Oskoui M, Genge A. Incidence and prevalence of amyotrophic lateral sclerosis in Canada: a systematic review of the literature. Neuroepidemiology. 2009;33:79–88.CrossRefPubMedGoogle Scholar
  62. 62.
    Robbins L, Conidi F. Stop football … save brains: a point counterpoint discussion. Headache. 2013;53:817–23.CrossRefPubMedGoogle Scholar
  63. 63.
    Logroscino G, Traynor BJ, Hardiman O, Chiò A, Couratier P, Mitchell JD, et al. Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. J Neurol Neurosurg Psychiatry. 2008;79:6–11.CrossRefPubMedGoogle Scholar
  64. 64.
    Malaspina A, Zaman R, Mazzini L, Camana C, Poloni E, Curti D, et al. Heterogeneous distribution of amyotrophic lateral sclerosis patients with SOD-1 gene mutations: preliminary data on an Italian survey. J Neurol Sci. 1999;162:201–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Marin B, Boumédiene F, Logroscino G, Couratier P, Babron M-C, Leutenegger AL, et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol. 2017;46:57–74.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Blizard InstituteQueen Mary University of LondonLondonUK
  2. 2.Department of Orthopaedic Surgery, Graduate School of MedicineThe University of TokyoBunkyo-kuJapan
  3. 3.Institute of Cognitive NeuroscienceUniversity College LondonLondonUK

Personalised recommendations