Advertisement

European Journal of Epidemiology

, Volume 32, Issue 5, pp 409–418 | Cite as

Associations of red and processed meat intake with major molecular pathological features of colorectal cancer

  • Prudence R. Carr
  • Lina Jansen
  • Stefanie Bienert
  • Wilfried Roth
  • Esther Herpel
  • Matthias Kloor
  • Hendrik Bläker
  • Jenny Chang-Claude
  • Hermann Brenner
  • Michael Hoffmeister
CANCER

Abstract

Red and processed meat is an established risk factor for colorectal cancer (CRC). However, exact mechanisms to explain the associations remain unclear. Few studies have investigated the association with CRC by molecular tumor features, which could provide relevant information on associated molecular pathways. In this population-based case–control study from Germany (DACHS), 2449 cases and 2479 controls provided information on risk factors of CRC and completed a food frequency questionnaire. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CI) for the associations between meat intake and risk of CRC by molecular pathologic features and specific subtypes. Red and processed meat intake was associated with increased risk of colorectal (>1 time/day vs ≤1 time/week OR 1.66, 95% CI 1.34–2.07), colon and rectal cancer. Among the single molecular tumor features investigated, the results were similar for associations of red and processed meat with CRC risk by microsatellite instability, CpG island methylator phenotype, BRAF, oestrogen receptor-β and p53 status. Red and processed meat intake was associated less strongly with risk of KRAS-mutated CRC (OR >1 time/day vs ≤1 time/week: 1.49, 95% CI 1.09–2.03) than with risk of KRAS-wildtype CRC (OR 1.82, 95% CI 1.42–2.34; p heterogeneity 0.04). These results support an association between red and processed meat and CRC risk similar for subsites of CRC and most of the investigated major molecular pathological features. Potential differences were observed in more specific subtype analyses. Further large studies are needed to confirm these results and to help further elucidate potential underlying mechanisms.

Keywords

Colorectal cancer Red meat Processed meat Molecular pathology Microsatellite instability CpG island methylator phenotype 

Notes

Acknowledgements

The authors thank Ute Handte-Daub, Ansgar Brandhorst and Petra Bächer for their excellent technical assistance. The authors thank the study participants and the interviewers who collected the data. The authors also thank the following hospitals and cooperating institutions that recruited patients for this study: Chirurgische Universitätsklinik Heidelberg, Klinik am Gesundbrunnen Heilbronn, St. Vincentiuskrankenhaus Speyer, St. Josefskrankenhaus Heidelberg, Chirurgische Universitätsklinik Mannheim, Diakonissenkrankenhaus Speyer, Krankenhaus Salem Heidelberg, Kreiskrankenhaus Schwetzingen, St. Marienkrankenhaus Ludwigshafen, Klinikum Ludwigshafen, Stadtklinik Frankenthal, Diakoniekrankenhaus Mannheim, Kreiskrankenhaus Sinsheim, Klinikum am Plattenwald Bad Friedrichshall, Kreiskrankenhaus Weinheim, Kreiskrankenhaus Eberbach, Kreiskrankenhaus Buchen, Kreiskrankenhaus Mosbach, Enddarmzentrum Mannheim, Kreiskrankenhaus Brackenheim, and Cancer Registry of Rhineland-Palatinate, Mainz. We are also very grateful for the support of the pathologies in the provision of tumour samples: Institut für Pathologie, Universitätsklinik Heidelberg; Institut für Pathologie, Klinikum Heilbronn; Institut für Angewandte Pathologie, Speyer; Pathologisches Institut, Universitätsklinikum Mannheim; Institut für Pathologie, Klinikum Ludwigshafen; Institut für Pathologie, Klinikum Stuttgart; Institut für Pathologie, Klinikum Ludwigsburg. Special thanks to the tissue bank of National Center for Tumor Diseases (NCT), Heidelberg, for storage and processing of the tissue samples.

Funding

This work was supported by the German Research Council (BR 1704/6-1, BR 1704/6-3, BR 1704/6-4, CH 117/1-1, HO 5117/2-1, HE 5998/2-1, KL 2354/3-1, RO 2270/8-1 and BR 1704/17-1), the German Federal Ministry of Education and Research (01KH0404, 01ER0814, 01ER0815, 01ER1505A and 01ER1505B), and the Interdisciplinary Research Program of the National Center for Tumor Diseases (NCT), Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10654_2017_275_MOESM1_ESM.docx (85 kb)
Supplementary material 1 (DOCX 84 kb)

References

  1. 1.
    Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut. 2011;60(3):397–411.CrossRefPubMedGoogle Scholar
  2. 2.
    Ogino S, Nishihara R, VanderWeele TJ, et al. Review article: the role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology. 2016;27(4):602–11.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chan DS, Lau R, Aune D, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE. 2011;6(6):e20456.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. In. Washington DC; 2007.Google Scholar
  5. 5.
    World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Report. Food, Nutrition, Physical Activity, and the Prevention of Colorectal Cancer. In; 2011Google Scholar
  6. 6.
    Bouvard V, Loomis D, Guyton KZ, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599–600.CrossRefPubMedGoogle Scholar
  7. 7.
    Hammerling U, Bergman Laurila J, Grafstrom R, Ilback NG. Consumption of Red/processed meat and colorectal carcinoma: possible mechanisms underlying the significant association. Crit Rev Food Sci Nutr. 2016;56(4):614–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Brink M, Weijenberg MP, de Goeij AF, et al. Meat consumption and K-ras mutations in sporadic colon and rectal cancer in The Netherlands Cohort Study. Br J Cancer. 2005;92(7):1310–20.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Slattery ML, Curtin K, Anderson K, et al. Associations between dietary intake and Ki-ras mutations in colon tumors: a population-based study. Cancer Res. 2000;60(24):6935–41.PubMedGoogle Scholar
  10. 10.
    Slattery ML, Curtin K, Ma K, et al. Diet activity, and lifestyle associations with p53 mutations in colon tumors. Cancer Epidemiol Biomarkers Prev. 2002;11(6):541–8.PubMedGoogle Scholar
  11. 11.
    Voskuil DW, Kampman E, van Kraats AA, et al. p53 over-expression and p53 mutations in colon carcinomas: relation to dietary risk factors. Int J Cancer. 1999;81(5):675–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Freedman AN, Michalek AM, Marshall JR, et al. Familial and nutritional risk factors for p53 overexpression in colorectal cancer. Cancer Epidemiol Biomarkers Prev. 1996;5(4):285–91.PubMedGoogle Scholar
  13. 13.
    Mrkonjic M, Chappell E, Pethe VV, et al. Association of apolipoprotein E polymorphisms and dietary factors in colorectal cancer. Br J Cancer. 2009;100(12):1966–74.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Satia JA, Keku T, Galanko JA, et al. Diet, lifestyle, and genomic instability in the North Carolina Colon Cancer Study. Cancer Epidemiol Biomarkers Prev. 2005;14(2):429–36.CrossRefPubMedGoogle Scholar
  15. 15.
    Diergaarde B, Braam H, van Muijen GN, Ligtenberg MJ, Kok FJ, Kampman E. Dietary factors and microsatellite instability in sporadic colon carcinomas. Cancer Epidemiol Biomarkers Prev. 2003;12(11 Pt 1):1130–6.PubMedGoogle Scholar
  16. 16.
    Joshi AD, Kim A, Lewinger JP, et al. Meat intake, cooking methods, dietary carcinogens, and colorectal cancer risk: findings from the Colorectal Cancer Family Registry. Cancer Med. 2015;4(6):936–52.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wu AH, Shibata D, Yu MC, Lai MY, Ross RK. Dietary heterocyclic amines and microsatellite instability in colon adenocarcinomas. Carcinogenesis. 2001;22(10):1681–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Slattery ML, Anderson K, Curtin K, Ma KN, Schaffer D, Samowitz W. Dietary intake and microsatellite instability in colon tumors. Int J Cancer. 2001;93(4):601–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Kampman E, Voskuil DW, van Kraats AA, et al. Animal products and K-ras codon 12 and 13 mutations in colon carcinomas. Carcinogenesis. 2000;21(2):307–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Slattery ML, Curtin K, Wolff RK, Herrick JS, Caan BJ, Samowitz W. Diet, physical activity, and body size associations with rectal tumor mutations and epigenetic changes. Cancer Causes Control. 2010;21(8):1237–45.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Brenner H, Chang-Claude J, Seiler CM, Rickert A, Hoffmeister M. Protection from colorectal cancer after colonoscopy: a population-based, case-control study. Ann Intern Med. 2011;154(1):22–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Brenner H, Chang-Claude J, Rickert A, Seiler CM, Hoffmeister M. Risk of colorectal cancer after detection and removal of adenomas at colonoscopy: population-based case-control study. J Clin Oncol. 2012;30(24):2969–76.CrossRefPubMedGoogle Scholar
  23. 23.
    Findeisen P, Kloor M, Merx S, et al. T25 repeat in the 3′ untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res. 2005;65(18):8072–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Hoffmeister M, Blaker H, Kloor M, et al. Body mass index and microsatellite instability in colorectal cancer: a population-based study. Cancer Epidemiol Biomarkers Prev. 2013;22(12):2303–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Jia M, Jansen L, Walter V, et al. No association of CpG island methylator phenotype and colorectal cancer survival: population-based study. Br J Cancer. 2016;. doi: 10.1038/bjc.2016.361.PubMedCentralGoogle Scholar
  26. 26.
    Warth A, Kloor M, Schirmacher P, Blaker H. Genetics and epigenetics of small bowel adenocarcinoma: the interactions of CIN, MSI, and CIMP. Mod Pathol. 2011;24(4):564–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Rudolph A, Toth C, Hoffmeister M, et al. Colorectal cancer risk associated with hormone use varies by expression of estrogen receptor-beta. Cancer Res. 2013;73(11):3306–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Yuan Y. Multiple imputation using SAS software. J Stat Softw. 2011;45(6):1–25.CrossRefGoogle Scholar
  29. 29.
    Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50(1):113–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Whitehall VL, Wynter CV, Walsh MD, et al. Morphological and molecular heterogeneity within nonmicrosatellite instability-high colorectal cancer. Cancer Res. 2002;62(21):6011–4.PubMedGoogle Scholar
  31. 31.
    Kambara T, Simms LA, Whitehall VL, et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004;53(8):1137–44.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Norat T, Lukanova A, Ferrari P, Riboli E. Meat consumption and colorectal cancer risk: dose-response meta-analysis of epidemiological studies. Int J Cancer. 2002;98(2):241–56.CrossRefPubMedGoogle Scholar
  33. 33.
    Norat T, Riboli E. Meat consumption and colorectal cancer: a review of epidemiologic evidence. Nutr Rev. 2001;59(2):37–47.CrossRefPubMedGoogle Scholar
  34. 34.
    Larsson SC, Wolk A. Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int J Cancer. 2006;119(11):2657–64.CrossRefPubMedGoogle Scholar
  35. 35.
    Sandhu MS, White IR, McPherson K. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk: a meta-analytical approach. Cancer Epidemiol Biomarkers Prev. 2001;10(5):439–46.PubMedGoogle Scholar
  36. 36.
    Carr PR, Walter V, Brenner H, Hoffmeister M. Meat subtypes and their association with colorectal cancer: systematic review and meta-analysis. Int J Cancer. 2016;138(2):293–302.CrossRefPubMedGoogle Scholar
  37. 37.
    Miller PE, Lazarus P, Lesko SM, et al. Meat-related compounds and colorectal cancer risk by anatomical subsite. Nutr Cancer. 2013;65(2):202–26.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bernstein AM, Song M, Zhang X, et al. Processed and unprocessed red meat and risk of colorectal cancer: analysis by tumor location and modification by time. PLoS ONE. 2015;10(8):e0135959.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ollberding NJ, Wilkens LR, Henderson BE, Kolonel LN, Le Marchand L. Meat consumption, heterocyclic amines and colorectal cancer risk: the Multiethnic Cohort Study. Int J Cancer. 2012;131(7):E1125–33.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Parr CL, Hjartaker A, Lund E, Veierod MB. Meat intake, cooking methods and risk of proximal colon, distal colon and rectal cancer: the Norwegian Women and Cancer (NOWAC) cohort study. Int J Cancer. 2013;133(5):1153–63.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Prudence R. Carr
    • 1
  • Lina Jansen
    • 1
  • Stefanie Bienert
    • 1
  • Wilfried Roth
    • 2
    • 3
  • Esther Herpel
    • 3
    • 4
  • Matthias Kloor
    • 5
  • Hendrik Bläker
    • 6
  • Jenny Chang-Claude
    • 7
    • 8
  • Hermann Brenner
    • 1
    • 9
    • 10
  • Michael Hoffmeister
    • 1
  1. 1.Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Institute of PathologyUniversity Medical Center MainzMainzGermany
  3. 3.Institute of PathologyHeidelberg University HospitalHeidelbergGermany
  4. 4.NCT Tissue BankNational Center for Tumor Diseases (NCT)HeidelbergGermany
  5. 5.Department of Applied Tumor Biology, Institute of PathologyHeidelberg University HospitalHeidelbergGermany
  6. 6.Institute of PathologyCharité University MedicineBerlinGermany
  7. 7.Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  8. 8.Genetic Tumour Epidemiology GroupUniversity Medical Center Hamburg-Eppendorf, University Cancer Center HamburgHamburgGermany
  9. 9.Division of Preventive OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  10. 10.German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations