European Journal of Epidemiology

, Volume 32, Issue 1, pp 3–20 | Cite as

For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates

ESSAY

Abstract

I present an overview of two methods controversies that are central to analysis and inference: That surrounding causal modeling as reflected in the “causal inference” movement, and that surrounding null bias in statistical methods as applied to causal questions. Human factors have expanded what might otherwise have been narrow technical discussions into broad philosophical debates. There seem to be misconceptions about the requirements and capabilities of formal methods, especially in notions that certain assumptions or models (such as potential-outcome models) are necessary or sufficient for valid inference. I argue that, once these misconceptions are removed, most elements of the opposing views can be reconciled. The chief problem of causal inference then becomes one of how to teach sound use of formal methods (such as causal modeling, statistical inference, and sensitivity analysis), and how to apply them without generating the overconfidence and misinterpretations that have ruined so many statistical practices.

Key Words

Bias Causal inference Causation Counterfactuals Potential outcomes Effect estimation Hypothesis testing Intervention analysis Modeling Significance testing Research synthesis Statistical inference 

References

  1. Aalen OO, Røysland K, Gran JM, Kouyos R, Lange T. Can we believe the DAGs? A comment on the relationship between causal DAGs and mechanisms. Stat Meth Med Res. 2016;25(5):2294–314.CrossRefGoogle Scholar
  2. Altman DG, Machin D, Bryant TN, Gardner MJ, editors. Statistics with Confidence. 2nd ed. London: BMJ Books; 2000.Google Scholar
  3. Baggerly K, Gunsalus CK. Penalty too light. Cancer Letter. 2015;41(42):1–9.Google Scholar
  4. Bancroft TW, Han CP. Inference based on conditional specification. Int Stat Rev. 1977;45:117–28.Google Scholar
  5. Belluz J, Plumer B, Resnick B. The 7 biggest problems facing science, according to 270 scientists. Vox, September 7, 2016, accessed Oct. 16, 2016 from http://www.vox.com/2016/7/14/12016710/science-challeges-research-funding-peer-review-process
  6. Box GEP. Sampling and Bayes inference in scientific modeling and robustness. J R Stat Soc Ser A. 1980;143:383–430.CrossRefGoogle Scholar
  7. Box GEP. Comment. Statist Sci. 1990;5:448–9.Google Scholar
  8. Breslow NE. Are statistical contributions to medicine undervalued? Biometrics. 2003;59(1):1–8.PubMedCrossRefGoogle Scholar
  9. Broadbent A, Vandenbroucke JP, Pearce N. Authors’ Reply to: VanderWeele et al., Chiolero, and Schooling et al. (letter). Int J Epidemiol 2016; in press.Google Scholar
  10. Bross IDJ. Pertinency of an extraneous variable. J Chronic Dis. 1967;20:487–95.PubMedCrossRefGoogle Scholar
  11. Chiolero A. Counterfactual and interventionist approach to cure risk factor epidemiology (letter). Int J Epidemiol 2016; in press.Google Scholar
  12. Cornfield J, Haenszel WH, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL. Smoking and lung cancer: recent evidence and a discussion of some questions. J Natl Cancer Inst. 1959;22:173–203.PubMedGoogle Scholar
  13. Cox DR. Some problems connected with statistical inference. Ann Math Stat. 1958;29:357–72.CrossRefGoogle Scholar
  14. Daniel RM, De Stavola BL, Vansteelandt S. The formal approach to quantitative causal inference in epidemiology: misguided or misrepresented? Int J Epidemiol 2016; in press.Google Scholar
  15. Dawid AP. The well-calibrated Bayesian (with discussion). JASA. 1982;77:604–13.Google Scholar
  16. Dawid AP. Causal inference without counterfactuals (with discussion). JASA. 2000;95:407–48.CrossRefGoogle Scholar
  17. Dawid AP. Beware of the DAG! In: D Janzing IG, Schoelkopf B (eds). Proceedings of the NIPS 2008 Workshop on Causality. Journal of Machine Learning Research Workshop and Conference Proceedings, Whistler, Canada, 2008, 59–86.Google Scholar
  18. Discacciati A, Orsini N, Greenland S. Approximate Bayesian logistic regression via penalized likelihood by data augmentation. Stata Journal. 2015;15(3):712–36.Google Scholar
  19. Dunning T. Improving causal inference: Strengths and limitations of natural experiments. Political Research Quarterly. 2008;61(2):282–93.CrossRefGoogle Scholar
  20. Ellis G, Silk J. Defend the integrity of physics. Nature. 2014;516:321–3.PubMedCrossRefGoogle Scholar
  21. Farsides T, Sparks P. Opinion: Buried in bullshit. The Psychologist. 2016;29:368–71.Google Scholar
  22. Feyerabend P. Against Method. New York: New Left Books, 1975; 3rd ed. New York: Verso, 1993.Google Scholar
  23. Feyerabend P. Killing Time. Chicago: U Chicago Press; 1995.Google Scholar
  24. Flanders WD, Johnson CY, Howards PP, Greenland S. Dependence of confounding on the target population: A modification of causal graphs to account for coaction. Ann Epidemiol. 2011;21:698–705.PubMedCrossRefGoogle Scholar
  25. Fleiss JL. Significance tests have a role in epidemiologic research: reactions to A. M. Walker. Am J Public Health. 1986a;76:559–60.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fleiss JL. Dr. Fleiss responds. Am J Public Health. 1986b;76:1033–4.PubMedCentralCrossRefGoogle Scholar
  27. Freedman DA. As others see us: a case study in path analysis (with discussion). J Educ Stat. 1987;12:101–223.Google Scholar
  28. Freedman DA, Navidi W, Peters SC. On the impact of variable selection in fitting regression equations. In: Dijlestra TK, editor. On model uncertainty and its statistical implications. Berlin: Springer-Verlag; 1988. p. 1–16.CrossRefGoogle Scholar
  29. Galea S. An argument for a consequentialist epidemiology. Am J Epidemiol. 2013;178:1185–91.PubMedCrossRefGoogle Scholar
  30. Gelman A. Causality and statistical learning. Am J Sociol. 2011;117:955–66.CrossRefGoogle Scholar
  31. Gelman A. P-values and statistical practice. Epidemiology. 2013;24:69–72.PubMedCrossRefGoogle Scholar
  32. Gelman A, Loken E. The statistical crisis in science: Data-dependent analysis—a “garden of forking paths”—explains why many statistically significant comparisons don’t hold up. Am Sci 2014a;102:460–465. Erratum at http://andrewgelman.com/2014/10/14/didnt-say-part-2/, accessed 25 Oct 2016.
  33. Gelman A, Loken E. The AAA tranche of subprime science. Chance. 2014;27(1):51–7.CrossRefGoogle Scholar
  34. Gelman A, Shalizi CS. Philosophy and the practice of Bayesian statistics (with discussion). Br J Math Stat Psych. 2013;66:8–80.CrossRefGoogle Scholar
  35. Gelman A, Stern HS. The difference between “significant” and “not significant” is not itself statistically significant. Am Stat. 2006;60:328–31.CrossRefGoogle Scholar
  36. George SL, Buyse M. Data fraud in clinical trials. Clin. Invest (London). 2015;5(2):161–73.CrossRefGoogle Scholar
  37. Gigerenzer G. We need statistical thinking, not statistical rituals. Behavioral & Brain Sciences. 1998;21:199–200.CrossRefGoogle Scholar
  38. Gigerenzer G. Mindless statistics. J Socioecon. 2004;33:567–606.Google Scholar
  39. Gigerenzer G, Marewski JN. Surrogate science: the idol of a universal method for scientific inference. J Manag. 2015;41:421–40.Google Scholar
  40. Gill RD. Statistics, causality and Bell’s theorem. Statistical Science. 2014;29(4):512–28.CrossRefGoogle Scholar
  41. Gilovich T, Griffin D, Kahneman D. Heuristics and biases: the psychology of intuitive judgment. New York: Cambridge University Press; 2002.CrossRefGoogle Scholar
  42. Glass TA, Goodman SN, Hernán MA, Samet JM. Causal inference in public health. Annu Rev Public Health. 2013;34:61–75.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Glymour C. Comment: Statistics and metaphysics. JASA. 1986;81:964–6.Google Scholar
  44. Glymour C, Glymour MR. Commentary: race and sex are causes. Epidemiology. 2014;25:488–90.PubMedCrossRefGoogle Scholar
  45. Glymour MM, Greenland S. Causal diagrams. Ch. 12 in: Rothman KJ, Greenland S, Lash TL. Modern Epidemiology, 3rd ed. Philadelphia: Lippincott 2008; 183-209.Google Scholar
  46. Goodman SN. P Values, hypothesis tests, and likelihood: implications for epidemiology of a neglected historical debate. Am J Epidemiol. 1993;137:485–96.PubMedCrossRefGoogle Scholar
  47. Goodman SN. Introduction to Bayesian methods I: measuring the strength of evidence. Clin Trials. 2005;2:282–90.PubMedCrossRefGoogle Scholar
  48. Goodman SN, Royall R. Evidence and scientific research. Am J Public Health. 1988;78:1568–74.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Greenhouse SW. Some epidemiologic issues for the 1980s. Am J Epidemiol. 1980;112(2):269–73.PubMedCrossRefGoogle Scholar
  50. Greenland S. The author replies to Newman and Browner. Am J Epidemiol. 1988;128:1182–4.CrossRefGoogle Scholar
  51. Greenland S. Randomization, statistics, and causal inference. Epidemiol. 1990;1:421–9.CrossRefGoogle Scholar
  52. Greenland S. Science versus advocacy: The challenge of Dr. Feinstein. Epidemiol. 1991;2:72–79.CrossRefGoogle Scholar
  53. Greenland S. The sensitivity of a sensitivity analysis (invited paper). In: 1997 Proceedings of the Biometrics Section. Alexandria, VA: American Statistical Association 1998; 19-21.Google Scholar
  54. Greenland S. Epidemiologic measures and policy formulation: Lessons from potential outcomes (with discussion). Emerging Themes in Epidemiology (online). 2005;2:1–4.CrossRefGoogle Scholar
  55. Greenland S. Introduction to Bayesian statistics. Ch. 18 in: Rothman KJ, Greenland S, Lash TL. Modern Epidemiology, 3rd ed. Philadelphia: Lippincott 2008; 328-44.Google Scholar
  56. Greenland S. Weaknesses of certain Bayesian methods for meta-analysis: The case of vitamin E and mortality (invited commentary). Clinical Trials. 2009a;6:42–6.PubMedCrossRefGoogle Scholar
  57. Greenland S. Relaxation penalties and priors for plausible modeling of nonidentified bias sources. Statistical Science. 2009b;24:195–210.CrossRefGoogle Scholar
  58. Greenland S. Overthrowing the tyranny of null hypotheses hidden in causal diagrams. Ch. 22 in: Dechter R, Geffner H, Halpern JY, eds. Heuristics, Probabilities, and Causality: A Tribute to Judea Pearl. London: College Press, 2010a, 365–382. Available at http://intersci.ss.uci.edu/wiki/pdf/Pearl/22_Greenland.pdf
  59. Greenland S. Comment: The need for syncretism in applied statistics. Statist Sci. 2010b;25:158–61.CrossRefGoogle Scholar
  60. Greenland S. Null misinterpretation in statistical testing and its impact on health risk assessment. Preventive Medicine. 2011;53:225–8.PubMedCrossRefGoogle Scholar
  61. Greenland S. Causal inference as a prediction problem: Assumptions, identification, and evidence synthesis. Ch. 5 in: Berzuini C, Dawid AP, Bernardinelli L (eds.). Causal Inference: Statistical Perspectives and Applications. Chichester: Wiley 2012a, 43-58.Google Scholar
  62. Greenland S. Nonsignificance plus high power does not imply support for the null over the alternative. Annals of Epidemiology. 2012a;22:364–8.PubMedCrossRefGoogle Scholar
  63. Greenland S. Transparency and disclosure, neutrality and balance: shared values or just shared words? Journal of Epidemiology and Community Health. 2012b;66:967–70.PubMedCrossRefGoogle Scholar
  64. Greenland S. The ASA guidelines and null bias in current teaching and practice. Am Statist 2016; 70: suppl. 10 at http://www.tandfonline.com/doi/suppl/10.1080/00031305.2016.1154108
  65. Greenland S. A serious misinterpretation of a consistent inverse association of statin use with glioma across 3 case-control studies. Eur J Epidemiol 2017a;32: in press.Google Scholar
  66. Greenland S. The biases of bias analyses will not help validity or reproducibility. Am J Epidemiol 2017b; to appear.Google Scholar
  67. Greenland S, Brumback BA. An overview of relations among causal modeling methods. Int J Epidemiol. 2002;31:1030–7.PubMedCrossRefGoogle Scholar
  68. Greenland S, Lash TL. Bias analysis. Ch. 19 in: Rothman KJ, Greenland S, Lash TL. Modern Epidemiology, 3rd ed. Philadelphia: Lippincott 2008; 345-80.Google Scholar
  69. Greenland S, Maclure M, Schlesselman JJ, Poole C, Morgenstern H. Standardized regression coefficients: a further critique and review of some alternatives. Epidemiology. 1991;2:387–92.PubMedCrossRefGoogle Scholar
  70. Greenland S, Mansournia MA. Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness. Eur J Epidemiol. 2015a;30:1101–10.PubMedCrossRefGoogle Scholar
  71. Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Stat Med 2015b;34:3133–43.Google Scholar
  72. Greenland S, Neutra RR. Control of confounding in the assessment of medical technology. Int J Epidemiol. 1980;9:361–7.PubMedCrossRefGoogle Scholar
  73. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37–48.PubMedCrossRefGoogle Scholar
  74. Greenland S, Poole C. Living with statistics in observational research. Epidemiology. 2013;24:73–8.PubMedCrossRefGoogle Scholar
  75. Greenland S, Robins JM. Identifiability, exchangeability and epidemiological confounding. Int J Epidemiol. 1986;15:413–9.PubMedCrossRefGoogle Scholar
  76. Greenland S, Senn SJ, Rothman KJ, Carlin JC, Poole C, Goodman SN, Altman DG. Statistical tests, confidence intervals, and power: A guide to misinterpretations. Eur J Epidemiol 2016; 31:337-50. https://dx.doi.org/10.1007%2Fs10654-016-0149-3
  77. Greenwood M. Is the statistical method of any value in medical research? Lancet. 1924;204:153–8.CrossRefGoogle Scholar
  78. Gustafson P. Bayesian inference for partially identified models. Int J Biostatist. 2010;6(2):17.CrossRefGoogle Scholar
  79. Gustafson P, Greenland S. The performance of random coefficient regression in accounting for residual confounding. Biometrics. 2006;62:760–8.PubMedCrossRefGoogle Scholar
  80. Gustafson P, Greenland S. Interval estimation for messy observational data. Stat Sci. 2009;24:328–42.CrossRefGoogle Scholar
  81. Gustafson P, McCandless L. Priors, parameters, and probability: A Bayesian perspective on sensitivity analysis. Epidemiol. 2014;26:910–2.CrossRefGoogle Scholar
  82. Hall JB. An address on yesterday, to-day, and to-morrow. Lancet. 1924;204:151–3.CrossRefGoogle Scholar
  83. Hernán MA. Invited commentary: hypothetical interventions to define causal effects afterthought or prerequisite? Am J Epidemiol. 2005;162:618–20.PubMedCrossRefGoogle Scholar
  84. Hernán MA. Does water kill? A call for less casual causal inferences. Ann Epidemiol. 2016;26:683–4.CrossRefGoogle Scholar
  85. Hernán MA, Clayton D, Keiding N. The Simpson’s paradox unraveled. Int J Epidemiol. 2011;40:780–5.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hernán MA, Robins JM. Causal inference. New York, Chapman & Hall, 2017, to appear.Google Scholar
  87. Hernán MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions to answer causal questions. Int J Obes. 2008;32(suppl 3):S8–14.CrossRefGoogle Scholar
  88. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.PubMedPubMedCentralGoogle Scholar
  89. Höfler M. The Bradford Hill considerations on causality: a counterfactual perspective. Emerg Themes Epidemiol. 2005;2(1):11.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Holland PW. Statistics and causal inference (with discussion). J Am Stat Assoc. 1986;81:945–70.CrossRefGoogle Scholar
  91. Hume, D. An Enquiry Concerning Human Understanding. Reprint of 1748 original by Oxford University Press, New York, 1999.Google Scholar
  92. Ioannidis JPA. Why most discovered true associations are inflated. Epidemiol. 2008;19:640–8.CrossRefGoogle Scholar
  93. Kaufman JS. Race: ritual, regression, and reality. Epidemiol. 2014;25:485–7.CrossRefGoogle Scholar
  94. Kaufman JS. There is no virtue in vagueness. Ann Epidemiol. 2016;26:683–4.PubMedCrossRefGoogle Scholar
  95. Keyes K, Galea S. What matters most: quantifying an epidemiology of consequence. Ann Epidemiol. 2015;25(5):305–11.PubMedPubMedCentralCrossRefGoogle Scholar
  96. King G, Zeng L. When can history be our guide? The pitfalls of counterfactual inference. Int Stud Q. 2007;51:183–210.CrossRefGoogle Scholar
  97. Krieger N, Davey Smith G. The tale wagged by the DAG: broadening the scope of causal inference and explanation for Epidemiology. Int J Epidemiol 2016; in press.Google Scholar
  98. Lachenbruch PA, Clark VA, Cumberland WG, Chang PC, Afifi AA, Flack VF, Elashoff RM. Letter to the Editor. AJPH. 1987;77(2):237.Google Scholar
  99. Lash TL. Heuristic thinking and inference from observational epidemiology. Epidemiology. 2007;18:67–72.PubMedCrossRefGoogle Scholar
  100. Lash TL, Fox MP, Fink AK. Applying Quantitative Bias Analysis to Epidemiologic Data. Boston: Springer; 2009.CrossRefGoogle Scholar
  101. Leamer EE. Specification Searches. New York: Wiley; 1978.Google Scholar
  102. Leamer EE. Sensitivity analyses would help. Am Econ Rev. 1985;75:308–13.Google Scholar
  103. Lewis D. Causation J. Philos 1973;70:556–567. Reprinted with postscript in: Lewis D. Philosophical papers. New York: Oxford University Press, 1986.Google Scholar
  104. Little RJA. Calibrated Bayes: A Bayes/frequentist roadmap. Am Statist. 2006;60:1–11.CrossRefGoogle Scholar
  105. Maclure M, Schneeweiss S. Causation of bias: The Episcope. Epidemiol. 2001;12:114–22.Google Scholar
  106. MacMahon B, Pugh TF. Causes and entities of disease. In: Clark DW, MacMahon B, eds. Preventive medicine. Boston: Little, Brown, 1967.Google Scholar
  107. Maldonado G. Toward a clearer understanding of causal concepts in epidemiology. Ann Epidemiol. 2013;23:743–9.PubMedCrossRefGoogle Scholar
  108. Maldonado G. The role of counterfactual theory in causal reasoning. Ann Epidemiol. 2016;26:681–2.PubMedCrossRefGoogle Scholar
  109. Maldonado G, Greenland S. Response: Defining and estimating causal effects. Int J Epidemiol. 2002;31:434–8.CrossRefGoogle Scholar
  110. Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials-A conversation between trialists and epidemiologists. Epidemiol. 2017;28:54–9.CrossRefGoogle Scholar
  111. Mill JS. A System of Logic. Reprint by Longmans, Green, London: Ratiocinative and Inductive; 1843. p. 1956.Google Scholar
  112. Morabia A. Has epidemiology become infatuated with methods? Annu Rev Public Health. 2015;36:69–88.PubMedCrossRefGoogle Scholar
  113. Naimi AI, Kaufman JS, MacLehose RF. Mediation misgivings: ambiguous clinical and public health interpretations of natural direct and indirect effects. In J Epidemiol. 2014;43:1656–61.Google Scholar
  114. Naimi AI. The counterfactual implications of fundamental cause theory. Curr Epidemiol Rep. 2016;3:92–7.CrossRefGoogle Scholar
  115. Neyman J. On the application of probability theory to agricultural experiments. Essay on principles. Section 9, 1923 (in Polish; translation in Statistical Science 1990, 465–472).Google Scholar
  116. Neyman J. Frequentist probability and frequentist statistics. Synthese. 1977;36:97–131.CrossRefGoogle Scholar
  117. Newman TB, Browner WS. Re: “Interpretation and choice of effect measures in epidemiologic analyses” (letter). Am J Epidemiol. 1988;12:1181–2.CrossRefGoogle Scholar
  118. Pearce N, Vandenbroucke JP. Commentary: Causation, mediation and explanation. Int J Epidemiol 2017;46: in press.Google Scholar
  119. Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–710.CrossRefGoogle Scholar
  120. Pearl J. Causality: models, reasoning and inference. 2nd ed. Cambridge, UK: Cambridge University Press; 2009.CrossRefGoogle Scholar
  121. Pearl J. On the consistency rule in causal inference: Axiom, definition, assumption, or theorem? Am J Epidemiol. 2010;21(6):872–5.CrossRefGoogle Scholar
  122. Pearl J. Causes of effects and effects of causes. Soc Meth Res. 2015;44(1):149–64.CrossRefGoogle Scholar
  123. Phillips CV. Quantifying and reporting uncertainty from systematic errors. Epidemiology. 2003;14:459–66.PubMedGoogle Scholar
  124. Phillips CV, Goodman KJ. The missed lessons of Sir Austin Bradford Hill. Epidemiol Perspect Innov. 2004;1:3. doi:10.1186/1742-5573-1-3.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Phillips CV, Goodman KJ. Causal criteria and counterfactuals: nothing more (or less) than scientific common sense. Emerg Themes Epidemiol. 2006;3:5. doi:10.1186/1742-7622-3-5.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Price H. Time’s Arrow and Archimedes’ Point. New York: Oxford, 1996.Google Scholar
  127. Poole C. Beyond the confidence interval. Am J Public Health. 1987;77:195–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Poole C. Low P-values or narrow confidence intervals: Which are more durable? Epidemiol. 2001;12:291–4.CrossRefGoogle Scholar
  129. Poole C, Greenland S. How a court accepted a possible explanation: A comment on Gastwirth, Krieger, and Rosenbaum. Am Statist. 1997;51:112–4.Google Scholar
  130. Porta M, Bolúmar F. Caution: work in progress. Eur J Epidemiol. 2016;31:535–9.PubMedCrossRefGoogle Scholar
  131. Porta M, Vineis P, Bolúmar F. The current deconstruction of paradoxes: one sign of the ongoing methodological “revolution”. Eur J Epidemiol. 2015;30:1079–87.PubMedCrossRefGoogle Scholar
  132. Rhodes E. Replication: Is the glass half full, half empty, or irrelevant? The Psychologist, 7th March 2016.Google Scholar
  133. Richardson T, Robins JM. Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality. Working Paper 128. Center for the Statistics and the Social Sciences, University of Washington, Seattle, 2013.Google Scholar
  134. Robins JM. A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods. J Chron Dis. 1987;40(supplement 2):139S–61S.PubMedCrossRefGoogle Scholar
  135. Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology. 1992;3:143–55.PubMedCrossRefGoogle Scholar
  136. Robins JM, Greenland S. Comment. J Am Stat Assoc. 2000;95:431–5.CrossRefGoogle Scholar
  137. Robins JM, Richardson TS. Alternative graphical causal models and the identification of direct effects. Ch. 6 in Shrout P, Keyes K, Ornstein K, eds. Causality and Psychopathology: Finding the Determinants of Disorders and their Cures. New York: Oxford, 2011, 1-52.Google Scholar
  138. Robins JM, Vander Weele TJ, Gill RD. A proof of Bell’s inequality in quantum mechanics using causal interactions. Scand J Statistics. 2015;42:329–35.CrossRefGoogle Scholar
  139. Robins JM, Weissman M. Counterfactual causation and streetlamps: What is to be done? Int J Epidemiol 2016; in press.Google Scholar
  140. Robins JM, Wasserman L. On the impossibility of inferring causation from association without background knowledge (with discussion). In: Glymour C, Cooper G, editors. Computation, Causation, and Discovery. Cambridge, MA: MIT Press; 1999. p. 305–42.Google Scholar
  141. Robins JM, Scheines R, Spirtes P, Wasserman L. Uniform consistency in causal inference. Biometrika. 2003;90:491–515.CrossRefGoogle Scholar
  142. Romer P. The trouble with macroeconomics. Am Economist 2016;to appear.Google Scholar
  143. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.CrossRefGoogle Scholar
  144. Rothman KJ. Causes. Am J Epidemiol. 1976;104:587–92.PubMedCrossRefGoogle Scholar
  145. Rothman KJ. A show of confidence. NEJM. 1978;299:1362–3.PubMedCrossRefGoogle Scholar
  146. Rothman KJ. Significance questing. Ann Intern Med. 1986;105:445–7.PubMedCrossRefGoogle Scholar
  147. Rouen TA. Letter to the Editor. AJPH. 1987;77(2):237.Google Scholar
  148. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol. 1974;66:688–701.CrossRefGoogle Scholar
  149. Rubin DB. Comment: Neyman (1923) and causal inference in experiments and observational studies. Stat Sci. 1990;5:472–80.Google Scholar
  150. Rubin DB. Practical implications of modes of statistical inference for causal effects, and the critical role of the assignment mechanism. Biometrics. 1991;47:1213–34.PubMedCrossRefGoogle Scholar
  151. Schooling C, Chow C, Au Yeung S. Causality and causal inference in epidemiology: we need also to address causes of effects (letter). Int J Epidemiol 2016; in press.Google Scholar
  152. Schwartz S, Gatto NM, Campbell UB. Causal identification: A charge of epidemiology in danger of marginalization. Ann Epidemiol. 2016;26:669–73.PubMedCrossRefGoogle Scholar
  153. Schwartz S, Gatto NM, Campbell UB. Heeding the call for less casual causal inferences: The utility of realized (quantitative) causal effects. Ann Epidemiol 2017;27: in press.Google Scholar
  154. Seliger C, Meier CR, Becker C, Jick SS, Bogdahn U. Hau1 P, Leitzmann MF. Statin use and risk of glioma: population-based case-control analysis. Eur J Epidemiol. 2016;31:947–51.PubMedCrossRefGoogle Scholar
  155. Sellke TM, Bayarri MJ, Berger JO. Calibration of p values for testing precise null hypotheses. Am Stat. 2001;55:62–71.CrossRefGoogle Scholar
  156. Senn SJ. Two cheers for P-values. J Epidemiol Biostat. 2001;6(2):193–204.PubMedCrossRefGoogle Scholar
  157. Senn SJ. Letter to the Editor re: Goodman 1992. Stat Med. 2002;21:2437–44.PubMedCrossRefGoogle Scholar
  158. Shafer G. Comment: Estimating causal effects. Int J Epidemiol. 2002;31:434–5.PubMedCrossRefGoogle Scholar
  159. Simon HA, Rescher N. Cause and counterfactual. Philosophy of Science. 1966;33(4):323–40.CrossRefGoogle Scholar
  160. Spirtes P, Glymour C, Scheines R. Causation, prediction, and search. Cambridge MA: MIT Press; 2001.Google Scholar
  161. Stallones RA. To advance epidemiology. Ann Rev Public Health. 1980;1:69–82.CrossRefGoogle Scholar
  162. Stalnaker RC. A theory of conditionals. In: Studies in Logical Theory, ed. Rescher N, 98-112. Oxford: Blackwell, 1968. Repr. in Causation and Conditionals, ed. E. Sosa, 165-79. Oxford: Oxford University Press, 1975.Google Scholar
  163. Stolley PD. When genius errs: R.A. Fisher and the lung cancer controversy. Am J Epidemiol. 1991;133(5):416–25.PubMedCrossRefGoogle Scholar
  164. Student (Gossett, WS). The probable error of a mean. Biometrika 1908;VI:1–25.Google Scholar
  165. Sullivan S, Greenland S. Bayesian regression in SAS software. Int J Epidemiol 2013;42:308-317. Erratum. Int J Epidemiol. 2014;43:1667–8.CrossRefGoogle Scholar
  166. Susser M. Judgment and causal inference. Am J Epidemiol. 1977;105:1–15.PubMedCrossRefGoogle Scholar
  167. Susser M. What is a cause and how do we know one? A grammar for pragmatic epidemiology. Am J Epidemiol. 1991;133:635–48.PubMedCrossRefGoogle Scholar
  168. Taleb NN. The Black Swan: The Impact of the Highly Improbable, 2nd ed. Random House 2010.Google Scholar
  169. Tukey JW. Causation, regression, and path analysis. In: Kempthorne O, ed. Statistics and Mathematics in Biology. Ames: Iowa State Press, 1954; Ch. 3.Google Scholar
  170. Tukey JW. The future of data analysis. Ann Math Stat. 1962;33:1–67.CrossRefGoogle Scholar
  171. Vandenbroucke JP. Commentary: ‘Smoking and lung cancer’ the embryogenesis of modern epidemiology. Int J Epidemiol. 2009;38:1193–6.PubMedCrossRefGoogle Scholar
  172. Vandenbroucke JP, Broadbent A, Pearce N. Causality and causal inference in epidemiology: the need for a pluralistic approach. Int J Epidemiol 2016; in press.Google Scholar
  173. VanderWeele TJ. Explanation in causal inference: methods for mediation and interaction. New York, NY: Oxford University Press; 2015.Google Scholar
  174. VanderWeele TJ. On causes, causal inference, and potential outcomes. Int J Epidemiol 2016a; in press.Google Scholar
  175. VanderWeele TJ. The role of potential outcomes thinking in assessing mediation and interaction. Int J Epidemiol 2016b; in press.Google Scholar
  176. VanderWeele TJ. Discussion of “Causal inference using invariant prediction: identification and confidence intervals” by Peters, Bühlmann and Meinshausen. J Roy Stat Soc B. 2016;78:995.Google Scholar
  177. VanderWeele TJ, Hernán MA. Causal effects and natural laws: Towards a conceptualization of causal counterfactuals for nonmanipulable exposures, with application to the effects of race and sex. Ch. 9 in: Berzuini C, Dawid AP, Bernardinelli L (eds.). Causal Inference: Statistical Perspectives and Applications. Chichester: Wiley 2012, 101-13.Google Scholar
  178. VanderWeele TJ, Hernán MA, Tchetgen Tchetgen EJ, Robins JM. Re: Causality and causal inference in epidemiology: the need for a pluralistic approach (letter). Int J Epidemiol 2016; in press.Google Scholar
  179. VanderWeele TJ, Robins JM. Stochastic counterfactuals and stochastic sufficient causes. Statistica Sinica. 2012;22:279–92.CrossRefGoogle Scholar
  180. VanderWeele TJ, Robinson WR. On causal interpretation of race in regressions adjusting for confounding and mediating variables. Epidemiol. 2014;25:473–84.CrossRefGoogle Scholar
  181. Wagenmakers E-J. A practical solution to the pervasive problem of p values. Psychon Bull Rev. 2007;14:779–804.PubMedCrossRefGoogle Scholar
  182. Walker AM. Reporting the results of epidemiologic studies. Am J Public Health. 1986a;76:556–8.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Walker AM. Significance tests represent consensus and standard practice. Am J Public Health. 1986b;76:1033.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Wasserstein RL, Lazar NA. The ASA’s statement on p-values: context, process, and purpose. Am Statist. 2016;70(2):129–33.CrossRefGoogle Scholar
  185. Anonymous. A new low in drug research: 21 fabricated studies. Wall Street Journal Mar. 11, 2009.Google Scholar
  186. Welch BL. On the z-test in randomized blocks and Latin squares. Biometrika. 1937;29:21–52.CrossRefGoogle Scholar
  187. Wilk MB. The randomization analysis of a generalized randomized block design. Biometrika. 1955;42:70–9.Google Scholar
  188. Wright S. Correlation and causation. Journal of Agricultural Research. 1921;20:557–85.Google Scholar
  189. Yates F. The influence of statistical methods for research workers on the development of the science of statistics. J Am Stat Assoc. 1951;46:19–34.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Epidemiology and Department of StatisticsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations