European Journal of Epidemiology

, Volume 32, Issue 3, pp 203–216 | Cite as

Agricultural activities and the incidence of Parkinson’s disease in the general French population

  • Sofiane Kab
  • Johan Spinosi
  • Laura Chaperon
  • Aline Dugravot
  • Archana Singh-Manoux
  • Frédéric Moisan
  • Alexis ElbazEmail author


Most studies on pesticides and Parkinson’s disease (PD) focused on occupational exposure in farmers. Whether non-occupational exposure is associated with PD has been little explored. We investigated the association between agricultural characteristics and PD incidence in a French nationwide ecologic study. We hypothesized that persons living in regions with agricultural activities involving more intensive pesticide use would be at higher risk. We identified incident PD cases from French National Health Insurance databases (2010–2012). The proportion of land dedicated to 18 types of agricultural activities was defined at the canton of residence level. We examined the association between agricultural activities and PD age/sex-standardized incidence ratios using multivariable multilevel Poisson regression adjusted for smoking, deprivation index, density of neurologists, and rurality (proportion of agricultural land); we used a false discovery rate approach to correct for multiple comparisons and compute q-values. We also compared incidence in clusters of cantons with similar agricultural characteristics (k-means algorithm). We identified 69,010 incident PD cases. Rurality was associated with higher PD incidence (p < 0.001). Cantons with higher density of vineyards displayed the strongest association (RRtop/bottom quartile = 1.102, 95% CI = 1.049–1.158; q-trend = 0.040). This association was similar in men, women, and non-farmers, stronger in older than younger persons, and present in all French regions. Persons living in the cluster with greatest vineyards density had 8.5% (4.4–12.6%) higher PD incidence (p < 0.001). In France, vineyards rank among the crops that require most intense pesticide use. Regions with greater presence of vineyards are characterized by higher PD risk; non-professional pesticides exposure is a possible explanation.


Parkinson’s disease Pesticides Agriculture Incidence Epidemiology 



SK is the recipient of a doctoral grant from Ministère chargé de l’agriculture et du développement durable, with financial support from Office national de l’eau et des milieux aquatiques, through fees for diffuse pollution attributed to funding of the governmental program ‘Plan Ecophyto’. Funding sources had no role in the design, interpretation, writing of the manuscript, or decision to submit for publication.

Compliance with ethical standards

Conflict of interest

The other authors declare that they have no conflict of interest.

Supplementary material

10654_2017_229_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2265 kb)


  1. 1.
    Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012;72(6):893–901.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    van der Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A, Vermeulen R. Is pesticide use related to Parkinson’s disease? Some clues to heterogeity in study results. Environ Health Perspect. 2012;120(3):340–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Pezzoli G, Cereda E. Exposure to pesticides or solvents and risk of Parkinson disease. Neurology. 2013;80(22):2035–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Baltazar MT, Dinis-Oliveira RJ, de Lourdes BM, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases-A mechanistic approach. Toxicol Lett. 2014;230(2):85–103.CrossRefPubMedGoogle Scholar
  5. 5.
    Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169:919–26.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    James KA, Hall DA. Groundwater pesticide levels and the association with Parkinson disease. Int J Toxicol. 2015;34(3):266–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Tuppin P, de RL, Weill A, Ricordeau P, Merliere Y. French national health insurance information system and the permanent beneficiaries sample. Rev Epidemiol Sante Publique. 2010;58(4):286–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Moisan F, Gourlet V, Mazurie JL, Dupupet JL, Houssinot J, Goldberg M, et al. Prediction model of Parkinson’s disease based on antiparkinsonian drug claims. Am J Epidemiol. 2011;174(3):354–63.CrossRefPubMedGoogle Scholar
  9. 9.
    Moisan F, Kab S, Mohamed F, Canonico M, Le Guern M, Quintin C, et al. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(9):952–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Couris CM, Colin C, Rabilloud M, Schott AM, Ecochard R. Method of correction to assess the number of hospitalized incident breast cancer cases based on claims databases. J Clin Epidemiol. 2002;55(4):386–91.CrossRefPubMedGoogle Scholar
  11. 11.
    Insee. Institut national de la statistique et des études économiques. Estimation de population. Accessed 01/12/2017.
  12. 12.
    Chen H, Burton EA, Ross GW, Huang X, Savica R, Abbott RD, et al. Research on the premotor symptoms of Parkinson’s disease: clinical and etiological implications. Environ Health Perspect. 2013;121(11–12):1245–52.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Agreste. Ministère de l’agriculture, de l’agroalimentaire et de la forêt. La statistique, l’évaluation et la prospective agricole. A propos des recensements agricoles et enquêtes structures des exploitations. 1988. Accessed 01/12/2017.
  14. 14.
    Inpes. Institut national de prévention et d’éducation pour la santé. Les Baromètres santé, un observatoire des comportements des Français pour orienter les politiques de santé publique. Accessed 01/12/2017.
  15. 15.
    Rey G, Jougla E, Fouillet A, Hemon D. Ecological association between a deprivation index and mortality in France over the period 1997–2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death. BMC Public Health. 2009;9:33.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wald L. Elements on the computation of UV maps in the Eurosun database. hal-00788420. 2012. Accessed 01/12/2017.
  17. 17.
    Qu Z, Gschwind B, Lefevre M, Wald L. Improving HelioClim-3 estimates of surface solar irradiance using the McClear clear-sky model and recent advances in atmosphere composition. Atmos Meas Tech. 2014;7:3927–33.CrossRefGoogle Scholar
  18. 18.
    SoDa (Solar Radiation Data) SSfIaR. SoDa Online documents and references. Accessed 01/12/2017.
  19. 19.
    Kift R, Webb A, Page J, Rimmer J, Janjai S. A Web-based tool for UV irradiance data: predictions for European and Southeast Asian sites. Photochem Photobiol. 2006;82(2):579–86.CrossRefPubMedGoogle Scholar
  20. 20.
    Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Thomsen J, et al. Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited. J Intern Med. 2000;247(2):260–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Kravietz A, Kab S, Wald L, Dugravot A, Singh-Manoux A, Moisan F, et al. Association of UV radiation with Parkinson disease incidence: a nationwide French ecologic study. Environ Res. 2017;154:50–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57(1):289–300.Google Scholar
  23. 23.
    Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat. 2003;31(6):2013–35.CrossRefGoogle Scholar
  24. 24.
    Lo Siou G, Yasui Y, Csizmadi I, McGregor SE, Robson PJ. Exploring statistical approaches to diminish subjectivity of cluster analysis to derive dietary patterns: the Tomorrow Project. Am J Epidemiol. 2011;173(8):956–67.CrossRefPubMedGoogle Scholar
  25. 25.
    Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ. 2003;326(7382):219.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang A, Costello S, Cockburn M, Zhang Z, Bronstein J, Ritz B. Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol. 2011;26(7):547–55.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gatto NM, Cockburn M, Bronstein J, Manthripragada AD, Ritz B. Well-water consumption and Parkinson’s disease in rural California. Environ Health Perspect. 2009;117(12):1912–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yitshak Sade M, Zlotnik Y, Kloog I, Novack V, Peretz C, Ifergane G. Parkinson’s disease prevalence and proximity to agricultural cultivated fields. Parkinsons Dis. 2015;2015:576564.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth WT Jr, Checkoway H. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch Neurol. 2005;62(1):91–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT, et al. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromed. 2008;13(1):37–48.CrossRefGoogle Scholar
  31. 31.
    Vlajinac HD, Sipetic SB, Maksimovic JM, Marinkovic JM, Dzoljic ED, Ratkov IS, et al. Environmental factors and Parkinson’s disease: a case-control study in Belgrade, Serbia. Int J Neurosci. 2010;120(5):361–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Kenborg L, Lassen CF, Lander F, Olsen JH. Parkinson’s disease among gardeners exposed to pesticides—a Danish cohort study. Scand J Work Environ Health. 2012;38(1):65–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Elbaz A, Clavel J, Rathouz PJ, Moisan F, Galanaud JP, Delemotte B, et al. Professional exposure to pesticides and Parkinson’s disease. Ann Neurol. 2009;66(4):494–504.CrossRefPubMedGoogle Scholar
  34. 34.
    Nalls MA, Escott-Price V, Williams NM, Lubbe S, Keller MF, Morris HR, et al. Genetic risk and age in Parkinson’s disease: continuum not stratum. Mov Disord. 2015;30(6):850–4.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, Paraquat and Parkinson’s Disease. Environ Health Perspect. 2011;119(6):866–72.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fréry N, Guldner L, Saoudi A, Garnier R, Zeghnoun A, Bidondo ML. Institut de veille sanitaire. Exposure of the French population to environmental chemicals. Volume 2—Polychlorobiphenyls (NDL-PCBs) and pesticides. Institut de veille sanitaire. 2013. Accessed 01/12/2017.
  37. 37.
    Ibarluzea J, Alvarez-Pedrerol M, Guxens M, Marina LS, Basterrechea M, Lertxundi A, et al. Sociodemographic, reproductive and dietary predictors of organochlorine compounds levels in pregnant women in Spain. Chemosphere. 2011;82(1):114–20.CrossRefPubMedGoogle Scholar
  38. 38.
    OECD. Organisation for Economic Co-operation and Development. Agri-environmental indicators. Accessed Accessed 01/12/2017.
  39. 39.
    Aubertot JN, Barbier JM, Carpentier A, Gril JJ, Guichard L, Lucas P et al. Pesticides, agriculture et environnement: réduire l’utilisation des pesticides et en limiter les impacts environnementaux. Institut national de la recherche agronomique (INRA)—Centre national du machinisme agricole du génie rural, des eaux et des forêts (CEMAGREF). 2005. Accessed 01/12/2017.
  40. 40.
    Moisan F, Spinosi J, Delabre L, Gourlet V, Mazurie JL, Benatru I, et al. Association of Parkinson’s disease and its subtypes with agricultural pesticide exposures in men: a case-control study in France. Environ Health Perspect. 2015;123(11):1123–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Moisan F, Spinosi J, Dupupet JL, Delabre L, Mazurie JL, Goldberg M, et al. The relation between type of farming and prevalence of Parkinson’s disease among agricultural workers in five French districts. Mov Disord. 2011;26(2):271–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Deziel NC, Friesen MC, Hoppin JA, Hines CJ, Thomas K, Freeman LE. A review of nonoccupational pathways for pesticide exposure in women living in agricultural areas. Environ Health Perspect. 2015;123(6):515–24.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Coignard F, Lorente C. Institut de veille sanitaire. Exposition aérienne aux pesticides des populations à proximité de zones agricoles. Institut de veille sanitaire. 2006. Accessed 01/12/2017.

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESPINSERM-U1018, Hôpital Paul BrousseVillejuifFrance
  2. 2.Santé publique France, Direction santé travailSaint-MauriceFrance
  3. 3.Unité mixte de recherche épidémiologique et de surveillance en transport, travail et environnement (Umrestte)Université de LyonLyonFrance
  4. 4.Department of Epidemiology and Public HealthUniversity College LondonLondonUK

Personalised recommendations