European Journal of Epidemiology

, Volume 31, Issue 12, pp 1191–1205 | Cite as

Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: a dose-response meta-analysis

  • Giuseppe Grosso
  • Agnieszka Micek
  • Justyna Godos
  • Salvatore Sciacca
  • Andrzej Pajak
  • Miguel A. Martínez-González
  • Edward L. Giovannucci
  • Fabio Galvano


Coffee consumption has been associated with several benefits toward human health. However, its association with mortality risk has yielded contrasting results, including a non-linear relation to all-cause and cardiovascular disease (CVD) mortality and no association with cancer mortality. As smoking habits may affect the association between coffee and health outcomes, the aim of the present study was to update the latest dose-response meta-analysis of prospective cohort studies on the association between coffee consumption and mortality risk and conduct stratified analyses by smoking status and other potential confounders. A systematic search was conducted in electronic databases to identify relevant studies, risk estimates were retrieved from the studies, and dose-response analysis was modeled by using restricted cubic splines. A total of 31 studies comprising 1610,543 individuals and 183,991 cases of all-cause, 34,574 of CVD, and 40,991 of cancer deaths were selected. Analysis showed decreased all-cause [relative risk (RR) = 0.86, 95 % confidence interval (CI) = 0.82, 0.89)] and CVD mortality risk (RR = 0.85, 95 % CI = 0.77, 0.93) for consumption of up to 4 cups/day of coffee, while higher intakes were associated with no further lower risk. When analyses were restricted only to non-smokers, a linear decreased risk of all-cause (RR = 0.94, 95 % CI = 0.93, 0.96), CVD (RR = 0.94, 95 % CI = 0.91, 0.97), and cancer mortality (RR = 0.98, 95 % CI = 0.96, 1.00) for 1 cup/day increase was found. The search for other potential confounders, including dose-response analyses in subgroups by gender, geographical area, year of publication, and type of coffee, showed no relevant differences between strata. In conclusion, coffee consumption is associated with decreased risk of mortality from all-cause, CVD, and cancer; however, smoking modifies the observed risk when studying the role of coffee on human health.


Coffee Mortality Cardiovascular disease Cancer Smoking Prospective cohorts Meta-analysis 



Author contribution: GG designed the study, performed the study search and wrote the manuscript; AM performed the analyses; JG built the databases and the tables; AP and MAMG provided insights on methodology and content; ELG and FG provided expertise on the topic and drafted the paper (equal contribution). All authors critically revised the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10654_2016_202_MOESM1_ESM.tif (169 kb)
Supplementary Figure 1. Dose-response association between coffee consumption and all-cause, CVD, and cancer mortality stratified by gender. Solid lines represent relative risk, dashed lines represent 95% confidence intervals. Supplementary material 1 (TIFF 168 kb)
10654_2016_202_MOESM2_ESM.tif (247 kb)
Supplementary Figure 2. Dose-response association between coffee consumption and all-cause, CVD, and cancer mortality stratified by geographical area. Solid lines represent relative risk, dashed lines represent 95% confidence intervals. Supplementary material 2 (TIFF 247 kb)
10654_2016_202_MOESM3_ESM.tif (169 kb)
Supplementary Figure 3. Dose-response association between coffee consumption and all-cause, CVD, and cancer mortality stratified by year of publication. Solid lines represent relative risk, dashed lines represent 95% confidence intervals. Supplementary material 3 (TIFF 168 kb)
10654_2016_202_MOESM4_ESM.tif (166 kb)
Supplementary Figure 4. Dose-response association between coffee consumption and all-cause, CVD, and cancer mortality stratified by type of coffee. Solid lines represent relative risk, dashed lines represent 95% confidence intervals. Supplementary material 4 (TIFF 166 kb)
10654_2016_202_MOESM5_ESM.docx (102 kb)
Supplementary material 5 (DOCX 101 kb)
10654_2016_202_MOESM6_ESM.docx (80 kb)
Supplementary material 6 (DOCX 79 kb)
10654_2016_202_MOESM7_ESM.docx (110 kb)
Supplementary material 7 (DOCX 110 kb)


  1. 1.
    Ranheim T, Halvorsen B. Coffee consumption and human health–beneficial or detrimental?–Mechanisms for effects of coffee consumption on different risk factors for cardiovascular disease and type 2 diabetes mellitus. Mol Nutr Food Res. 2005;49(3):274–84. doi: 10.1002/mnfr.200400109.CrossRefPubMedGoogle Scholar
  2. 2.
    Loomis D, Guyton KZ, Grosse Y, et al. Carcinogenicity of drinking coffee, mate, and very hot beverages. Lancet Oncol. 2016;17(7):877–8. doi: 10.1016/S1470-2045(16)30239-X.CrossRefPubMedGoogle Scholar
  3. 3.
    Godos J, Pluchinotta FR, Marventano S, et al. Coffee components and cardiovascular risk: beneficial and detrimental effects. Int J Food Sci Nutr. 2014;65(8):925–36. doi: 10.3109/09637486.2014.940287.CrossRefPubMedGoogle Scholar
  4. 4.
    Aleksandrova K, Bamia C, Drogan D, et al. The association of coffee intake with liver cancer risk is mediated by biomarkers of inflammation and hepatocellular injury: data from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 2015;102(6):1498–508. doi: 10.3945/ajcn.115.116095.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jacobs S, Kroger J, Floegel A, et al. Evaluation of various biomarkers as potential mediators of the association between coffee consumption and incident type 2 diabetes in the EPIC-Potsdam Study. Am J Clin Nutr. 2014;100(3):891–900. doi: 10.3945/ajcn.113.080317.CrossRefPubMedGoogle Scholar
  6. 6.
    Koloverou E, Panagiotakos DB, Pitsavos C, et al. The evaluation of inflammatory and oxidative stress biomarkers on coffee-diabetes association: results from the 10-year follow-up of the ATTICA Study (2002–2012). Eur J Clin Nutr. 2015;69(11):1220–5. doi: 10.1038/ejcn.2015.98.CrossRefPubMedGoogle Scholar
  7. 7.
    Loftfield E, Shiels MS, Graubard BI, et al. Associations of coffee drinking with systemic immune and inflammatory markers. Cancer Epidemiol Biomark Prev. 2015;24(7):1052–60. doi: 10.1158/1055-9965.EPI-15-0038-T.CrossRefGoogle Scholar
  8. 8.
    Pellegrini N, Serafini M, Colombi B, et al. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr. 2003;133(9):2812–9.PubMedGoogle Scholar
  9. 9.
    Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr. 2014;53(1):25–38. doi: 10.1007/s00394-013-0603-x.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu YJ, Zhan J, Liu XL, Wang Y, Ji J, He QQ. Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr. 2014;33(1):59–63. doi: 10.1016/j.clnu.2013.03.011.CrossRefPubMedGoogle Scholar
  11. 11.
    Woo HD, Kim J. Dietary flavonoid intake and smoking-related cancer risk: a meta-analysis. PLoS ONE. 2013;8(9):e75604. doi: 10.1371/journal.pone.0075604.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Malerba S, Turati F, Galeone C, et al. A meta-analysis of prospective studies of coffee consumption and mortality for all causes, cancers and cardiovascular diseases. Eur J Epidemiol. 2013;28(7):527–39. doi: 10.1007/s10654-013-9834-7.CrossRefPubMedGoogle Scholar
  13. 13.
    Je Y, Giovannucci E. Coffee consumption and total mortality: a meta-analysis of twenty prospective cohort studies. Br J Nutr. 2014;111(7):1162–73. doi: 10.1017/S0007114513003814.CrossRefPubMedGoogle Scholar
  14. 14.
    Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am J Epidemiol. 2014;180(8):763–75. doi: 10.1093/aje/kwu194.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhao Y, Wu K, Zheng J, Zuo R, Li D. Association of coffee drinking with all-cause mortality: a systematic review and meta-analysis. Public Health Nutr. 2015;18(7):1282–91. doi: 10.1017/S1368980014001438.CrossRefPubMedGoogle Scholar
  16. 16.
    Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2014;129(6):643–59. doi: 10.1161/CIRCULATIONAHA.113.005925.CrossRefPubMedGoogle Scholar
  17. 17.
    Xie Y, Qin J, Nan G, Huang S, Wang Z, Su Y. Coffee consumption and the risk of lung cancer: an updated meta-analysis of epidemiological studies. Eur J Clin Nutr. 2015;. doi: 10.1038/ejcn.2015.96.Google Scholar
  18. 18.
    Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135(11):1301–9.PubMedGoogle Scholar
  19. 19.
    Orsini NBR, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stata J. 2006;6:40–57.Google Scholar
  20. 20.
    Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175(1):66–73. doi: 10.1093/aje/kwr265.CrossRefPubMedGoogle Scholar
  21. 21.
    Kahn HA, Phillips RL, Snowdon DA, Choi W. Association between reported diet and all-cause mortality. Twenty-one-year follow-up on 27,530 adult Seventh-Day Adventists. Am J Epidemiol. 1984;119(5):775–87.PubMedGoogle Scholar
  22. 22.
    Jacobsen BK, Bjelke E, Kvale G, Heuch I. Coffee drinking, mortality, and cancer incidence: results from a Norwegian prospective study. J Natl Cancer Inst. 1986;76(5):823–31.PubMedGoogle Scholar
  23. 23.
    Vandenbroucke JP, Kok FJ, van ‘t Bosch G, van den Dungen PJ, van der Heide-Wessel C, van der Heide RM. Coffee drinking and mortality in a 25-year follow up. Am J Epidemiol. 1986;123(2):359–61.PubMedGoogle Scholar
  24. 24.
    LeGrady D, Dyer AR, Shekelle RB, et al. Coffee consumption and mortality in the Chicago Western Electric Company Study. Am J Epidemiol. 1987;126(5):803–12.PubMedGoogle Scholar
  25. 25.
    Rosengren A, Wilhelmsen L. Coffee, coronary heart disease and mortality in middle-aged Swedish men: findings from the Primary Prevention Study. J Intern Med. 1991;230(1):67–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Lindsted KD, Kuzma JW, Anderson JL. Coffee consumption and cause-specific mortality. Association with age at death and compression of mortality. J Clin Epidemiol. 1992;45(7):733–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Klatsky AL, Armstrong MA, Friedman GD. Coffee, tea, and mortality. Ann Epidemiol. 1993;3(4):375–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Hart C, Smith GD. Coffee consumption and coronary heart disease mortality in Scottish men: a 21 year follow up study. J Epidemiol Community Health. 1997;51(4):461–2.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Woodward M, Tunstall-Pedoe H. Coffee and tea consumption in the Scottish Heart Health Study follow up: conflicting relations with coronary risk factors, coronary disease, and all cause mortality. J Epidemiol Community Health. 1999;53(8):481–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kleemola P, Jousilahti P, Pietinen P, Vartiainen E, Tuomilehto J. Coffee consumption and the risk of coronary heart disease and death. Arch Intern Med. 2000;160(22):3393–400.CrossRefPubMedGoogle Scholar
  31. 31.
    Iwai N, Ohshiro H, Kurozawa Y, et al. Relationship between coffee and green tea consumption and all-cause mortality in a cohort of a rural Japanese population. J Epidemiol. 2002;12(3):191–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Jazbec A, Simic D, Corovic N, Durakovic Z, Pavlovic M. Impact of coffee and other selected factors on general mortality and mortality due to cardiovascular disease in Croatia. J Health Popul Nutr. 2003;21(4):332–40.PubMedGoogle Scholar
  33. 33.
    Andersen LF, Jacobs DR Jr, Carlsen MH, Blomhoff R. Consumption of coffee is associated with reduced risk of death attributed to inflammatory and cardiovascular diseases in the Iowa Women’s Health Study. Am J Clin Nutr. 2006;83(5):1039–46.PubMedGoogle Scholar
  34. 34.
    Paganini-Hill A, Kawas CH, Corrada MM. Non-alcoholic beverage and caffeine consumption and mortality: the Leisure World Cohort Study. Prev Med. 2007;44(4):305–10. doi: 10.1016/j.ypmed.2006.12.011.CrossRefPubMedGoogle Scholar
  35. 35.
    Happonen P, Laara E, Hiltunen L, Luukinen H. Coffee consumption and mortality in a 14-year follow-up of an elderly northern Finnish population. Br J Nutr. 2008;99(6):1354–61. doi: 10.1017/S0007114507871650.CrossRefPubMedGoogle Scholar
  36. 36.
    Laaksonen M, Talala K, Martelin T, et al. Health behaviours as explanations for educational level differences in cardiovascular and all-cause mortality: a follow-up of 60 000 men and women over 23 years. Eur J Pub Health. 2008;18(1):38–43. doi: 10.1093/eurpub/ckm051.CrossRefGoogle Scholar
  37. 37.
    Ahmed HN, Levitan EB, Wolk A, Mittleman MA. Coffee consumption and risk of heart failure in men: an analysis from the Cohort of Swedish Men. Am Heart J. 2009;158(4):667–72. doi: 10.1016/j.ahj.2009.07.006.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    de Koning Gans JM, Uiterwaal CS, van der Schouw YT, et al. Tea and coffee consumption and cardiovascular morbidity and mortality. Arterioscler Thromb Vasc Biol. 2010;30(8):1665–71. doi: 10.1161/ATVBAHA.109.201939.CrossRefPubMedGoogle Scholar
  39. 39.
    Leurs LJ, Schouten LJ, Goldbohm RA, van den Brandt PA. Total fluid and specific beverage intake and mortality due to IHD and stroke in the Netherlands Cohort Study. Br J Nutr. 2010;104(8):1212–21. doi: 10.1017/S0007114510001923.CrossRefPubMedGoogle Scholar
  40. 40.
    Sugiyama K, Kuriyama S, Akhter M, et al. Coffee consumption and mortality due to all causes, cardiovascular disease, and cancer in Japanese women. J Nutr. 2010;140(5):1007–13. doi: 10.3945/jn.109.109314.CrossRefPubMedGoogle Scholar
  41. 41.
    Mineharu Y, Koizumi A, Wada Y, et al. Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health. 2011;65(3):230–40. doi: 10.1136/jech.2009.097311.CrossRefPubMedGoogle Scholar
  42. 42.
    Tamakoshi A, Lin Y, Kawado M, et al. Effect of coffee consumption on all-cause and total cancer mortality: findings from the JACC study. Eur J Epidemiol. 2011;26(4):285–93. doi: 10.1007/s10654-011-9548-7.CrossRefPubMedGoogle Scholar
  43. 43.
    Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. New Engl J Med. 2012;366(20):1891–904. doi: 10.1056/NEJMoa1112010.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gardener H, Rundek T, Wright CB, Elkind MS, Sacco RL. Coffee and tea consumption are inversely associated with mortality in a multiethnic urban population. J Nutr. 2013;143(8):1299–308. doi: 10.3945/jn.112.173807.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Liu J, Sui X, Lavie CJ, et al. Association of coffee consumption with all-cause and cardiovascular disease mortality. Mayo Clin Proc. 2013;88(10):1066–74. doi: 10.1016/j.mayocp.2013.06.020.CrossRefPubMedGoogle Scholar
  46. 46.
    Ding M, Satija A, Bhupathiraju SN, et al. Association of Coffee consumption with total and cause-specific mortality in 3 large prospective cohorts. Circulation. 2015;132(24):2305–15. doi: 10.1161/CIRCULATIONAHA.115.017341.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lof M, Sandin S, Yin L, Adami HO, Weiderpass E. Prospective study of coffee consumption and all-cause, cancer, and cardiovascular mortality in Swedish women. Eur J Epidemiol. 2015;. doi: 10.1007/s10654-015-0052-3.Google Scholar
  48. 48.
    Loftfield E, Freedman ND, Graubard BI, et al. Association of coffee consumption with overall and cause-specific mortality in a large US prospective cohort study. Am J Epidemiol. 2015;182(12):1010–22. doi: 10.1093/aje/kwv146.PubMedGoogle Scholar
  49. 49.
    Odegaard AO, Koh WP, Yuan JM, Pereira MA. Beverage habits and mortality in Chinese adults. J Nutr. 2015;145(3):595–604. doi: 10.3945/jn.114.200253.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Saito E, Inoue M, Sawada N, et al. Association of coffee intake with total and cause-specific mortality in a Japanese population: the Japan Public Health Center-based Prospective Study. Am J Clin Nutr. 2015;101(5):1029–37. doi: 10.3945/ajcn.114.104273.CrossRefPubMedGoogle Scholar
  51. 51.
    Grosso G, Stepaniak U, Micek A, Stefler D, Bobak M, Pajak A. Coffee consumption and mortality in three Eastern European countries: results from the HAPIEE (Health, Alcohol and Psychosocial factors In Eastern Europe) study. Public Health Nutr. 2016:1–10. doi: 10.1017/S1368980016001749.
  52. 52.
    Greenberg JA, Dunbar CC, Schnoll R, Kokolis R, Kokolis S, Kassotis J. Caffeinated beverage intake and the risk of heart disease mortality in the elderly: a prospective analysis. Am J Clin Nutr. 2007;85(2):392–8.PubMedGoogle Scholar
  53. 53.
    Rosner SA, Akesson A, Stampfer MJ, Wolk A. Coffee consumption and risk of myocardial infarction among older Swedish women. Am J Epidemiol. 2007;165(3):288–93. doi: 10.1093/aje/kwk013.CrossRefPubMedGoogle Scholar
  54. 54.
    Cheng M, Hu Z, Lu X, Huang J, Gu D. Caffeine intake and atrial fibrillation incidence: dose response meta-analysis of prospective cohort studies. Canadian J Cardiol. 2014;30(4):448–54. doi: 10.1016/j.cjca.2013.12.026.CrossRefGoogle Scholar
  55. 55.
    Mostofsky E, Rice MS, Levitan EB, Mittleman MA. Habitual coffee consumption and risk of heart failure: a dose-response meta-analysis. Circulation Heart Failure. 2012;5(4):401–5. doi: 10.1161/CIRCHEARTFAILURE.112.967299.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Guertin KA, Loftfield E, Boca SM, et al. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am J Clin Nutr. 2015;101(5):1000–11. doi: 10.3945/ajcn.114.096099.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pham NM, Nanri A, Yasuda K, et al. Habitual consumption of coffee and green tea in relation to serum adipokines: a cross-sectional study. Eur J Nutr. 2015;54(2):205–14. doi: 10.1007/s00394-014-0701-4.CrossRefPubMedGoogle Scholar
  58. 58.
    Zimmermann-Viehoff F, Thayer J, Koenig J, Herrmann C, Weber CS, Deter HC. Short-term effects of espresso coffee on heart rate variability and blood pressure in habitual and non-habitual coffee consumers - A randomized crossover study. Nutr Neurosci. 2015;. doi: 10.1179/1476830515Y.0000000018.PubMedGoogle Scholar
  59. 59.
    Grosso G, Marventano S, Galvano F, Pajak A, Mistretta A. Factors associated with metabolic syndrome in a mediterranean population: role of caffeinated beverages. J Epidemiol. 2014;24(4):327–33.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Liu H, Hu GH, Wang XC, et al. Coffee consumption and prostate cancer risk: a meta-analysis of cohort studies. Nutr Cancer. 2015;67(3):392–400. doi: 10.1080/01635581.2015.1004727.CrossRefPubMedGoogle Scholar
  61. 61.
    Sang LX, Chang B, Li XH, Jiang M. Consumption of coffee associated with reduced risk of liver cancer: a meta-analysis. BMC Gastroenterol. 2013;13:34. doi: 10.1186/1471-230X-13-34.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Tian C, Wang W, Hong Z, Zhang X. Coffee consumption and risk of colorectal cancer: a dose-response analysis of observational studies. Cancer Causes Control. 2013;24(6):1265–8. doi: 10.1007/s10552-013-0200-6.CrossRefPubMedGoogle Scholar
  63. 63.
    Li YM, Peng J, Li LZ. Coffee consumption associated with reduced risk of oral cancer: a meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121(4):381–9. doi: 10.1016/j.oooo.2015.12.006.CrossRefPubMedGoogle Scholar
  64. 64.
    Grosso G, Stepaniak U, Topor-Madry R, Szafraniec K, Pajak A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition. 2014;30(11–12):1398–403. doi: 10.1016/j.nut.2014.04.012.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Perez-Jimenez J, Fezeu L, Touvier M, et al. Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr. 2011;93(6):1220–8. doi: 10.3945/ajcn.110.007096.CrossRefPubMedGoogle Scholar
  66. 66.
    Tresserra-Rimbau A, Medina-Remon A, Perez-Jimenez J, et al. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutrition Metab Cardiovasc Dis NMCD. 2013;23(10):953–9. doi: 10.1016/j.numecd.2012.10.008.CrossRefPubMedGoogle Scholar
  67. 67.
    Zamora-Ros R, Knaze V, Rothwell JA, et al. Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Nutr. 2015;. doi: 10.1007/s00394-015-0950-x.PubMedGoogle Scholar
  68. 68.
    Zujko ME, Witkowska AM, Waskiewicz A, Sygnowska E. Estimation of dietary intake and patterns of polyphenol consumption in Polish adult population. Adv Med Sci. 2012;57(2):375–84. doi: 10.2478/v10039-012-0026-6.CrossRefPubMedGoogle Scholar
  69. 69.
    Grosso GSU, Micek A, Pikhart H, Bobak B, Pajak A. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur J Nutr. 2016. (ahead of print).Google Scholar
  70. 70.
    Lopez-Garcia E, van Dam RM, Qi L, Hu FB. Coffee consumption and markers of inflammation and endothelial dysfunction in healthy and diabetic women. Am J Clin Nutr. 2006;84(4):888–93.PubMedGoogle Scholar
  71. 71.
    Onakpoya IJ, Spencer EA, Thompson MJ, Heneghan CJ. The effect of chlorogenic acid on blood pressure: a systematic review and meta-analysis of randomized clinical trials. J Hum Hypertens. 2015;29(2):77–81. doi: 10.1038/jhh.2014.46.CrossRefPubMedGoogle Scholar
  72. 72.
    Jin UH, Lee JY, Kang SK, et al. A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: isolation and identification from methanol extract of Euonymus alatus. Life Sci. 2005;77(22):2760–9. doi: 10.1016/j.lfs.2005.02.028.CrossRefPubMedGoogle Scholar
  73. 73.
    Cardenas C, Quesada AR, Medina MA. Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene. PLoS ONE. 2011;6(8):e23407. doi: 10.1371/journal.pone.0023407.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wang S, Yoon YC, Sung MJ, Hur HJ, Park JH. Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2012;421(3):567–71. doi: 10.1016/j.bbrc.2012.04.046.CrossRefPubMedGoogle Scholar
  75. 75.
    Cornelis MC, et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry. 2015;20(5):647–56. doi: 10.1038/mp.2014.107.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Giuseppe Grosso
    • 1
  • Agnieszka Micek
    • 2
  • Justyna Godos
    • 1
  • Salvatore Sciacca
    • 1
  • Andrzej Pajak
    • 2
  • Miguel A. Martínez-González
    • 3
    • 4
  • Edward L. Giovannucci
    • 5
    • 6
    • 7
  • Fabio Galvano
    • 8
  1. 1.Integrated Cancer Registry of Catania-Messina-Siracusa-EnnaAzienda Policlinico Universitaria “Vittorio Emanuele”CataniaItaly
  2. 2.Department of Epidemiology and Population StudiesJagiellonian University Medical CollegeKrakowPoland
  3. 3.Department of Preventive Medicine & Public Health, School of MedicineUniversity of Navarra-IDISNAPamplonaSpain
  4. 4.CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Institute of Health Carlos IIIMadridSpain
  5. 5.Department of EpidemiologyHarvard TH Chan School of Public HealthBostonUSA
  6. 6.Department of NutritionHarvard TH Chan School of Public HealthBostonUSA
  7. 7.Channing Division of Network Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  8. 8.Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly

Personalised recommendations