European Journal of Epidemiology

, Volume 32, Issue 1, pp 67–75 | Cite as

Leukocyte telomere length and ideal cardiovascular health in American Indians: the Strong Heart Family Study

  • Hao Peng
  • Mihriye Mete
  • Sameer Desale
  • Amanda M. Fretts
  • Shelley A. Cole
  • Lyle G. Best
  • Jue Lin
  • Elizabeth Blackburn
  • Elisa T. Lee
  • Barbara V. Howard
  • Jinying Zhao
CARDIOVASCULAR DISEASE

Abstract

Telomere length, a marker of biological aging, has been associated with cardiovascular disease (CVD) and its risk factors. Ideal cardiovascular health (CVH), defined by the American Heart Association (AHA), has also been associated with a reduced risk of CVD, but the relationship between telomere length and ideal CVH is unclear. We measured leukocyte telomere length (LTL) by qPCR in 2568 American Indians in the Strong Heart Family Study (SHFS). All participants were free of overt CVD at enrollment (2001–2003). CVH indices included four behavioral factors (smoking, physical activity, diet, BMI) and three health factors (blood pressure, cholesterol, fasting glucose). Each index was categorized as poor, intermediate, or ideal according to the AHA’s guideline. CVH was further categorized into below average (0–1), average (2–3) and above average (≥4) based on the total number of ideal indices. Results showed that, 29, 50 and 21 % of study participants had below average, average, and above average CVH, respectively. Participants with above average CVH had significantly longer LTL than those with below average CVH (β = 0.034, P = 0.042) after adjusting for age, sex, education level, marital status, processed meat consumption, alcohol consumption, and study site. Compared to the U.S. general population, American Indians achieved lower rates for five out of the seven ideal CVH metrics, including smoking, BMI, physical activity, diet, and blood pressure. Achieving four or more ideal CVH metrics was significantly associated with longer LTL. This finding suggests that achieving an ideal CVH may prevent or delay CVD, probably through promoting healthy aging.

Keywords

American Indians Biological aging Ideal cardiovascular health Leukocyte telomere length Strong heart family study 

References

  1. 1.
    de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19(18):2100–10. doi:10.1101/gad.1346005.CrossRefPubMedGoogle Scholar
  2. 2.
    Broer L, Codd V, Nyholt DR, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–8. doi:10.1038/ejhg.2012.303.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhao J, Zhu Y, Lin J, et al. Short leukocyte telomere length predicts risk of diabetes in american Indians: the strong heart family study. Diabetes. 2014;63(1):354–62. doi:10.2337/db13-0744.CrossRefPubMedGoogle Scholar
  5. 5.
    Weischer M, Nordestgaard BG, Cawthon RM, Freiberg JJ, Tybjærg-Hansen A, Bojesen SE. Short telomere length, cancer survival, and cancer risk in 47102 individuals. J Natl Cancer Inst. 2013:djt016.Google Scholar
  6. 6.
    Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation. 2010;121(4):586–613. doi:10.1161/circulationaha.109.192703.CrossRefPubMedGoogle Scholar
  7. 7.
    Folsom AR, Yatsuya H, Nettleton JA, Lutsey PL, Cushman M, Rosamond WD. Community prevalence of ideal cardiovascular health, by the American Heart Association definition, and relationship with cardiovascular disease incidence. J Am Coll Cardiol. 2011;57(16):1690–6. doi:10.1016/j.jacc.2010.11.041.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dong C, Rundek T, Wright CB, Anwar Z, Elkind MS, Sacco RL. Ideal cardiovascular health predicts lower risks of myocardial infarction, stroke, and vascular death across whites, blacks, and hispanics: the northern Manhattan study. Circulation. 2012;125(24):2975–84. doi:10.1161/circulationaha.111.081083.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kulshreshtha A, Vaccarino V, Judd SE, et al. Life’s simple 7 and risk of incident stroke: the reasons for geographic and racial differences in stroke study. Stroke. 2013;44(7):1909–14. doi:10.1161/strokeaha.111.000352.CrossRefPubMedGoogle Scholar
  10. 10.
    Reis JP, Loria CM, Launer LJ, et al. Cardiovascular health through young adulthood and cognitive functioning in midlife. Ann Neurol. 2013;73(2):170–9. doi:10.1002/ana.23836.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thacker EL, Gillett SR, Wadley VG, et al. The American Heart Association life’s simple 7 and incident cognitive impairment: the reasons for geographic and racial differences in stroke (REGARDS) study. J Am Heart Assoc. 2014;3(3):e000635. doi:10.1161/jaha.113.000635.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fretts AM, Howard BV, McKnight B, et al. Life’s simple 7 and incidence of diabetes among American Indians: the strong heart family study. Diabetes Care. 2014;37(8):2240–5. doi:10.2337/dc13-2267.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Laitinen TT, Pahkala K, Magnussen CG, et al. Ideal cardiovascular health in childhood and cardiometabolic outcomes in adulthood the cardiovascular risk in Young Finns study. Circulation. 2012;125(16):1971–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Sturlaugsdottir R, Aspelund T, Bjornsdottir G, et al. Carotid atherosclerosis and cardiovascular health metrics in old subjects from the AGES-Reykjavik study. Atherosclerosis. 2015;242(1):65–70. doi:10.1016/j.atherosclerosis.2015.06.043.CrossRefPubMedGoogle Scholar
  15. 15.
    Kulshreshtha A, Goyal A, Veledar E, et al. Association between ideal cardiovascular health and carotid intima-media thickness: a twin study. J Am Heart Assoc. 2014;3(1):e000282. doi:10.1161/jaha.113.000282.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Oikonen M, Laitinen TT, Magnussen CG, et al. Ideal cardiovascular health in young adult populations from the United States, Finland, and Australia and its association with cIMT: the International Childhood Cardiovascular Cohort Consortium. J Am Heart Assoc. 2013;2(3):e000244. doi:10.1161/jaha.113.000244.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ford ES, Greenlund KJ, Hong Y. Ideal cardiovascular health and mortality from all causes and diseases of the circulatory system among adults in the United States. Circulation. 2012;125(8):987–95. doi:10.1161/circulationaha.111.049122.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yang Q, Cogswell ME, Flanders WD, et al. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA. 2012;307(12):1273–83. doi:10.1001/jama.2012.339.CrossRefPubMedGoogle Scholar
  19. 19.
    Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4. doi:10.1016/s0140-6736(05)66630-5.CrossRefPubMedGoogle Scholar
  20. 20.
    Strandberg TE, Saijonmaa O, Tilvis RS, et al. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011;66(7):815–20. doi:10.1093/gerona/glr064.CrossRefPubMedGoogle Scholar
  21. 21.
    Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkala KH, Fyhrquist F. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki businessmen study. Eur J Epidemiol. 2012;27(10):815–22. doi:10.1007/s10654-012-9728-0.CrossRefPubMedGoogle Scholar
  22. 22.
    Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8. doi:10.1001/archinternmed.2007.39.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen S, Yeh F, Lin J, et al. Short leukocyte telomere length is associated with obesity in American Indians: the strong heart family study. Aging (Albany, NY). 2014;6(5):380–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Farrag W, Eid M, El-Shazly S, Abdallah M. Angiotensin II type 1 receptor gene polymorphism and telomere shortening in essential hypertension. Mol Cell Biochem. 2011;351(1–2):13–8. doi:10.1007/s11010-010-0706-0.CrossRefPubMedGoogle Scholar
  25. 25.
    Demissie S, Levy D, Benjamin EJ, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell. 2006;5(4):325–30.CrossRefPubMedGoogle Scholar
  26. 26.
    Harte AL, da Silva NF, Miller MA, et al. Telomere length attrition, a marker of biological senescence, is inversely correlated with triglycerides and cholesterol in South Asian males with type 2 diabetes mellitus. Exp Diabetes Res. 2012;2012:895185. doi:10.1155/2012/895185.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zee RY, Castonguay AJ, Barton NS, Germer S, Martin M. Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case-control study. Transl Res. 2010;155(4):166–9. doi:10.1016/j.trsl.2009.09.012.CrossRefPubMedGoogle Scholar
  28. 28.
    Chen S, Lin J, Matsuguchi T, et al. Short leukocyte telomere length predicts incidence and progression of carotid atherosclerosis in American Indians: the strong heart family study. Aging (Albany, NY). 2014;6(5):414–27.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    North KE, Howard BV, Welty TK, et al. Genetic and environmental contributions to cardiovascular disease risk in American Indians the strong heart family study. Am J Epidemiol. 2003;157(4):303–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Lee ET, Welty TK, Fabsitz R, et al. The strong heart study. A study of cardiovascular disease in American Indians: design and methods. Am J Epidemiol. 1990;132(6):1141–55.CrossRefPubMedGoogle Scholar
  31. 31.
    Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Foraker RE, Abdel-Rasoul M, Kuller LH, et al. Cardiovascular health and incident cardiovascular disease and cancer: the women’s health initiative. Am J Prev Med. 2015;. doi:10.1016/j.amepre.2015.07.039.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Dhamoon MS, Dong C, Elkind MS, Sacco RL. Ideal cardiovascular health predicts functional status independently of vascular events: the Northern Manhattan study. J Am Heart Assoc. 2015;4(2):e001322.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rasmussen-Torvik LJ, Shay CM, Abramson JG, et al. Ideal cardiovascular health is inversely associated with incident cancer the atherosclerosis risk in communities study. Circulation. 2013;127(12):1270–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Desai CS, Ning H, Liu K, et al. Cardiovascular health in young adulthood and association with left ventricular structure and function later in life: the coronary artery risk development in young adults study. J Am Soc Echocardiogr. 2015;28:1452–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Shah AM, Claggett B, Folsom AR, et al. Ideal cardiovascular health during adult life and cardiovascular structure and function among the elderly. Circulation. 2015;. doi:10.1161/circulationaha.115.017882.Google Scholar
  37. 37.
    Folsom AR, Shah AM, Lutsey PL, et al. American Heart Association’s Life’s Simple 7: avoiding heart failure and preserving cardiac structure and function. Am J Med. 2015;128(9):970976e2. doi:10.1016/j.amjmed.2015.03.027.CrossRefGoogle Scholar
  38. 38.
    Olson NC, Cushman M, Judd SE, et al. American Heart Association’s Life’s Simple 7 and risk of venous thromboembolism: the reasons for geographic and racial differences in stroke (REGARDS) study. J Am Heart Assoc. 2015;4(3):e001494. doi:10.1161/jaha.114.001494.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yan N, Zhou Y, Wang Y, et al. Association of ideal cardiovascular health and brachial-ankle pulse wave velocity: a cross-sectional study in Northern China. J Stroke Cerebrovasc Dis. 2015;. doi:10.1016/j.jstrokecerebrovasdis.2015.08.031.Google Scholar
  40. 40.
    Aatola H, Hutri-Kahonen N, Juonala M, et al. Prospective relationship of change in ideal cardiovascular health status and arterial stiffness: the cardiovascular risk in Young Finns study. J Am Heart Assoc. 2014;3(2):e000532. doi:10.1161/jaha.113.000532.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Crichton GE, Elias MF, Robbins MA. Cardiovascular health and arterial stiffness: the Maine-Syracuse longitudinal study. J Hum Hypertens. 2014;28(7):444–9. doi:10.1038/jhh.2013.131.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Robbins JM, Petrone AB, Carr JJ, et al. Association of ideal cardiovascular health and calcified atherosclerotic plaque in the coronary arteries: The National Heart, Lung, and Blood Institute Family Heart Study. Am Heart J. 2015;169(3):371378e1. doi:10.1016/j.ahj.2014.12.017.CrossRefGoogle Scholar
  43. 43.
    Saleem Y, DeFina LF, Radford NB, et al. Association of a favorable cardiovascular health profile with the presence of coronary artery calcification. Circ Cardiovasc Imaging. 2015;8(1):e001851.CrossRefPubMedGoogle Scholar
  44. 44.
    Alman AC, Maahs DM, Rewers MJ, Snell-Bergeon JK. Ideal cardiovascular health and the prevalence and progression of coronary artery calcification in adults with and without type 1 diabetes. Diabetes Care. 2014;37(2):521–8. doi:10.2337/dc13-0997.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gao J, Sun H, Liang X, et al. Ideal cardiovascular health behaviors and factors prevent the development of hypertension in prehypertensive subjects. Clin Exp Hypertens. 2015;37(8):650–5. doi:10.3109/10641963.2015.1047938.CrossRefPubMedGoogle Scholar
  46. 46.
    Espana-Romero V, Artero EG, Lee DC, et al. A prospective study of ideal cardiovascular health and depressive symptoms. Psychosomatics. 2013;54(6):525–35. doi:10.1016/j.psym.2013.06.016.CrossRefPubMedGoogle Scholar
  47. 47.
    Jaspers L, Dhana K, Muka T, et al. Sex steroids, sex hormone-binding globulin and cardiovascular health in men and postmenopausal women: the Rotterdam study. J Clin Endocrinol Metab. 2016;101(7):2844–52. doi:10.1210/jc.2016-1435.CrossRefPubMedGoogle Scholar
  48. 48.
    Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hao Peng
    • 1
    • 2
  • Mihriye Mete
    • 3
  • Sameer Desale
    • 3
  • Amanda M. Fretts
    • 4
  • Shelley A. Cole
    • 5
  • Lyle G. Best
    • 6
  • Jue Lin
    • 7
  • Elizabeth Blackburn
    • 7
  • Elisa T. Lee
    • 8
  • Barbara V. Howard
    • 3
  • Jinying Zhao
    • 1
    • 2
  1. 1.Department of Epidemiology, College of Public Health and Health Professions, College of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Department of EpidemiologyTulane University School of Public HealthNew OrleansUSA
  3. 3.MedStar Health Research InstituteHyattsvilleUSA
  4. 4.Department of EpidemiologyUniversity of WashingtonSeattleUSA
  5. 5.Department of GeneticsTexas Biomedical Research InstituteSan AntonioUSA
  6. 6.Missouri Breaks Industries Research IncTimber LakeUSA
  7. 7.Department of Biochemistry and BiophysicsUniversity of CaliforniaSan FranciscoUSA
  8. 8.Center for American Indian Health ResearchUniversity of Oklahoma Health Science CenterOklahoma CityUSA

Personalised recommendations